スポーツバイオメカニクスワークブック 【解 答】

		第1章 スポーツバイオメカニクス序説				
問題番号	解答番号	解答,計算式,補足など				
問 1.1	[2]	生体力学				
問 1.2	[2]	×				
問 1.3	[3]	①スポーツパフォーマンスの向上,②傷害予防				
問 1.4	[2]	労働環境の安全と開発 [1]リハビリテーション医学・福祉工学, [3]交通・宇宙生物工学, [4]スポーツバイオメカニクス				
問 1.5	[3]	ニュートン力学 [1] 光速度ないしは光速度に近い運動を対象, [2] 電気や磁気を対象, [4] 分子や原子の運動を対象 なお, [3] は日常的なスポーツや身体運動,乗り物,機械の運動などの等身大(原寸大)の世界の運動を対象とする.				
問 1.6	[2]	kinematics [1] 身体運動学 (または身体運動科学), [3] 運動力学, [4] 動作学 (キネシクス:身振り, ボディランゲージ)				
問 1.7	[1]	0				
問 1.8	[3]	Bridge the gap 「ギャップを埋める」と解される.一般に「"研究と現場の乖離"を問題視し,その間に架け橋を掛ける」,つまり研究と現場間のよりよい関係を築くために,研究と現場の相互交流を促進することによって互いの資源(人,モノ,カネ,情報,時間など)を流動させながら共有化または融合化を図ることばとして使われていると考えられる.				
問 1.9	[3]	1978年				
問 1.10	[4]	宮下充正 博士				
問 1.11	[3]	ガリレイ 氏名はガリレオ(名)・ガリレイ(氏). 一般的には名の "ガリレオ" が使われている.				
問 1.12	[2]	4 本脚の同時離地				
問 1.13	[3]	マイブリッジ賞				
問 1.14	[3]	義肢・義足の開発				
問 1.15	[4]	パフォーマンス向上と傷害発生リスクの関係究明				
問 1.16	[2]	× 力の大きさだけでなく、力を作用させる時間も考慮されなければならない。つまり、力積 や力学的パワーを大きくする必要がある。				

問 1.17	[3]	運動上手→同好き→同継続→同能力向上
問 1.18	[6]	いずれも正解
問 1.19	[5]	筋知覚力
問 1.20	[2]	× 通常、机上を中指で押すほうが大きな力を発揮していると "感じ取る" ことができるだろう。なぜなら、指先の皮膚 (表皮、真皮) には多くの触覚や痛覚を司る受容体 (圧力や振動、痛みなどを感知するセンサー) が点在しているため、われわれの脳はこれらの受容体から末梢神経を介して伝達される情報をより多く受け取っているためである。 このような簡単な試行動作 (実験)によって「力学的な力」と「感覚的な力」の違いを知ることができる。

	第2章 力学と数学の基礎					
問題番号	解答番号	解答,計算式,補足など				
問 2.1	[3]	重心モデル(「質点モデル」と同義:ヒトの場合は「身体重心モデル」) 「腰を低くした姿勢」とは、力学的に、いい換えれば、"身体重心"を低くした姿勢である。 身体重心の高さは「姿勢の安定の三条件」の一つであるため、「重心が低いと倒されにくい」 という意味も含み、力士の強さをいい表している。こうした"合理的な"理由があり、解 説者は白鵬の取り組みを"横綱相撲"と講評したのである。ただし、解説者がその理由を知っ ていたかどうかは定かでないが…。				
問 2.2	右欄	[1]質点 [2]質点系 [3]剛体 [4]剛体系 【知っておくと役に立つ!】 中学・高校で学習した力学は、力学大系(教科書:図 1.2 参照)の一部を扱ったものであった. そこでは、物体の運動は「質点」の運動に限られ、「剛体」の運動は扱わないか、扱っても触れる程度であった。一般にスポーツバイオメカニクスでは、ヒトの身体の各部分(頭、体幹、上腕、前腕、手、大腿、下腿、足)は質量も大きさももつ物体、すなわち「剛体」とみなされるため、身体重心(剛体系)や部分重心の「並進運動」も、また、身体重心や部分重心回り、それに関節回りなどの部分の「回転運動」もどちらも扱う必要がある。通常、われわれの日常における等身大の世界(ニュートン力学が適用される現実世界)では、本来、物体は質量も大きさももつ、つまり"形があり見える"物体(「剛体モデル」、「質点系モデル」)としてみなされるべきであるのに、高校までの理科や物理では、物体は質量をもつが大きさをもたない、つまり"形がなく見えない!"物体(「質点モデル」)としてみなされている。このため、高校までの理科や物理では、物体(質点)の「並進運動」のみを取り扱えば十分であり、物体(剛体)の「回転運動」を取り扱う必要性はない(質点は大きさがないため回転しない)、したがって、われわれにとって、「並進運動」や「回転運動」ということば自体(の概念、区別)が非常になじみ薄いものとなっている。スポーツバイオメカニクスの理論(知識、法則、公式など)を身につけ使いこなせるようになるためには、中等教育では扱わない(教えない)、これらの力学モデルの違いと運動形態の違いを十二分に理解することが極めて重要であることを指摘しておきたい。				
問 2.3	[2]	並進直線運動 直線走路疾走時のスプリンターの体幹の運動, 砲丸を投げ出す直前の投者の投げ手の運動, カーリングを投げるヒトの滑走運動など				

問 2.4	[3]	並進曲線運動 野球のベースターン時の体幹の運動、曲線走路滑走時のスピードスケーターの上体やボブスレーのソリの運動、マジシャンが"見えない糸"で操るスティックの運動、ゆりかごの運動など				
問 2.5	[4]	一般運動				
問 2.6	[4]	一般運動 ヒトの身体は各部分 (剛体) が関節で連結されたモデル ("剛体リンクモデル") としてみなされるため、身体運動は複数の部分が関節回りに「回転運動」を行う結果として身体重心を「並進運動」させる「一般運動」とみなすことができる.				
問 2.7	[2]	等速度運動				
問 2.8	[3]	等加速度運動				
問 2.9	[1]	0				
問 2.10	[3]	右手系直交座標系				
問 2.11	右欄	78.0 4860 1.000 40.3 124.5				
問 2.12	右欄	0.1667 59.2 0.1250 1.091 13.25 0.857				
問 2.13	右欄	度数法: 1 年 365 日の端数を除いた 360 を角度として表す 弧度法: 半径と円弧の長さの比率として角度を表す				
問 2.14	右欄	1回転 = 360[°]				
問 2.15	右欄	$360 [^{\circ}] = 2\pi = 6.28 [rad]$				
問 2.16	右欄	1 [rad] = $\frac{360}{2\pi}$ (\$\pi\tau\frac{180}{\pi}\$) \\ \(\) 57.3 [°]				
問 2.17	右欄	5 [m/s] × 3.6 = 18.00 [km/h] 以下(計算式省略) 36.0 [km/h] 72.0 [km/h] 108.0 [km/h] 144.0 [km/h] 6 [km/h] × 1/3.6 ≒ 1.667 [m/s] 以下(計算式省略) 2.78 [m/s] 4.17 [m/s] 27.8 [m/s] 41.7 [m/s]				
問 2.18	右欄	12.35 × 3.6 ≒ 44.5 [km/h]				
問 2.19	右欄	$10 \ [^\circ] \times \frac{\pi}{180} \ = 0.1745 \ [rad]$ 以下(計算式省略) 1.327 [rad] 8.12 [rad] 12.57 [rad] 38.4 [rad] 114.5 [rad] 5 [rad] $\times \frac{180}{\pi} \ = 286 \ [^\circ]$ 以下(計算式省略) 458 [$^\circ$] 802 [$^\circ$] 1432 [$^\circ$] 2460 [$^\circ$]				
問 2.20	[4]	cm				
問 2.21	[2]	N				
問 2.22	[2]	×				
問 2.23	[2]	×				
問 2.24	[1]	0				
問 2.25	[2]	×				

問 2.26	右欄	スカラー量:質量, 仕事, エネルギー, パワー, 温度, 面積, 体積など ベクトル量:変位, 速度, 加速度, 角変位, 角速度, 角加速度, 力, 運動量, 力積, 力のモー メント(トルク), 角運動量, 角力積など			
問 2.27	[6]	[1] と[4]			
問 2.28	[2]	×(正解:単位ベクトル)			
問 2.29	[2]	隣辺(底辺)の長さを斜辺の長さで割る			
問 2.30	[2]	$a^2 = b^2 + c^2$			
問 2.31	右欄	式(2.7)より, i = 0.832 j = 0.555 (要点 2.6 参照)			
問 2.32	右欄	式(2.7)より,i = 5.31 j = 0.1474 k = 1.327 (要点 2.6 参照)			
問 2.33	[3]	180°			
問 2.34	右欄	$b = 10 \tan 40^\circ = 8.39, \ c = \frac{10}{\cos 40^\circ} = 13.05$			
問 2.35	右欄	$a = 24 \cos 75^{\circ} = 6.21, \theta = 90^{\circ} - 75^{\circ} = 15^{\circ} \text{\sharp b}, b = 24 \cos 15^{\circ} = 23.2$			
問 2.36	右欄	$\alpha = 90^{\circ} - 42^{\circ} = 48^{\circ} \ \text{\sharp 5}, \ \ a = \frac{12}{\tan 48^{\circ}} = 10.80, \ \ c = \frac{12}{\sin 42^{\circ}} = 17.93$			
問 2.37	右欄	$a = \frac{18}{\tan 62^{\circ}} = 9.57, c = \frac{18}{\sin 62^{\circ}} = 20.4$			
問 2.38	右欄	$\alpha = \cos^{-1}\left(\frac{13}{19}\right) = 46.8 [\degree], \theta = \sin^{-1}\left(\frac{13}{19}\right) = 43.2 [\degree]$			
問 2.39	右欄	$\alpha = \tan^{-1}\left(\frac{14}{8}\right) = 60.3 [\degree], \theta = \tan^{-1}\left(\frac{8}{14}\right) = 29.7 [\degree]$			
問 2.40	右欄	$\alpha = \tan^{-1}\left(\frac{26}{18}\right) = 55.3 [\degree], \theta = \tan^{-1}\left(\frac{18}{26}\right) = 34.7 [\degree]$			
問 2.41	右欄	$a = 90^{\circ} - 35^{\circ} = 55^{\circ} \ \text{$\rlap{$\rlap{\downarrow}}$} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
問 2.42	右欄	$\alpha = 90^{\circ} - 85^{\circ} = 5^{\circ} \text{ lb}, \ a = \frac{17}{\tan 5^{\circ}} = 1.487, \ c = \frac{17}{\sin 85^{\circ}} = 17.06$			
問 2.43	右欄	X 軸方向へ 2.00 単位(Y 軸方向へ 0 単位)			
問 2.44	右欄	Y 軸方向へ -6.00 単位(X 軸方向へ 0 単位)			
問 2.45	右欄	対辺(高さ)を a , 隣辺(底辺)を b , 斜辺を c とすると, $c = \sqrt{a^2 + b^2}$ より, $c = \sqrt{5^2 + 4^2} = 6.40$ 単位			
問 2.46	 右欄	(計算式省略)			
		点 A から点 B までの距離:6.71 単位			
		点 E から点 F までの距離:3.61 単位			
門 O 47	/- 地	$\alpha = 63.4$ [°] $\beta = 26.6$ [°] $\gamma = 33.6$ [°] $\delta = 56.4$ [°]			
問 2.47	右欄 —————	(計算式省略) 61.5 [°] 28.5 [°]			
問 2.48	右欄 	(計算式省略) 隣辺 12.74 [m] 対辺 7.65 [m]			
問 2.49	右欄	(計算式省略) 隣辺 7.12 [m] 斜辺 8.31 [m]			

	第3章 並進運動のキネマティクス					
問題番号	解答番号	解答,計算式,補足など				
問 3.1	右欄	s を距離(位置、変位)とすると、 $t = \frac{s}{v}$ より、 $t = \frac{384000 \text{ [km]}}{300000 \text{ [km/s]}} = 1.280 \text{ [s]}$				
問 3.2	右欄	8分20秒は500 s, 光の速さは300000 km/s s = vt より, s = 300000000 [m/s] × 500 [s] = 1500000000000 [m] = 1500 × 10 ⁸ [m](1.500 × 10 ⁸ [km])				
問 3.3	右欄	$v = \frac{s}{t} \sharp 9, \ \ v = \frac{100 [\text{m}]}{9.58 [\text{s}]} = 10.44 [\text{m/s}]$				
問 3.4	右欄	100 [km] $\times \frac{1}{3.6} = 27.8$ [m/s] $t = \frac{s}{v} \text{lb}, \ t = \frac{100 [\text{m}]}{27.8 [\text{m/s}]} = 3.60$ [s]				
問 3.5	右欄	$v = \frac{s}{t} \sharp 9, \ \ v = \frac{42195 [\text{m}]}{7550 [\text{s}]} = 5.59 [\text{m/s}]$				
問 3.6	右欄	$s = vt \& 0$, $s = 340 [\text{m/s}] \times 3600 [\text{s}] = 1224000 [\text{m}] (1224 \times 10^3 [\text{m}]) (1224 [\text{km}])$				
問 3.7	右欄	$s = vt \& 0$, $s = 69.4 [\text{m/s}] \times 7200 [\text{s}] = 499680 [\text{m}] = 500 \times 10^3 [\text{m}] (500 [\text{km}])$				
問 3.8	[2]	×				
問 3.9	[3]	第1象限と第4象限 なお、横軸が時間でない場合は、第1と第4象限以外も使う。また、横軸が時間でも負で 表記する場合(投球のリリースを0sとして、時間をさかのぼって表記するような場合)は、 第2、第3象限も使う場合がある。				
問 3.10	[1]	0				
問 3.11	[4]	速度が負である				
問 3.12	[4]	位置の変化率				
問 3.13	[3]	等速度				
問 3.14	[1]	位置が一定なら、速度はゼロである				
問 3.15	[2]					
問 3.16	[2]	×				
問 3.17	[2]	負				
問 3.18	右欄	$v = \frac{\Delta s}{\Delta t}$ & b , $v = \frac{70 - 60}{1.2} = 8.333 \dots = 8.33 \text{ [m/s]}$ $8.333 \dots \times 3.6 = 30.0 \text{ [km/s]}$				
問 3.19	[4]	速度の変化率				
問 3.20	[2]	負				
問 3.21	右欄	$a = \frac{\Delta v}{\Delta t} \text{t} \text{t}, \ \ a = \frac{v_2 - v_1}{\Delta t} = \frac{-3.35 - 2.40}{3} = -1.917 [\text{m/s}^2]$				
問 3.22	右欄	$162 \times \frac{1}{3.6} = 45.0 \text{ [m/s]}. t = \frac{s}{v} = \frac{17.5}{45.0} = 0.389 \text{ [s]}$				
問 3.23	右欄	$v = \frac{s}{t} = \frac{17.8}{0.47} = 37.9 \text{ [m/s]}$				

問 3.24	右欄	投手がボールを投げてから捕手がそのボールを捕球して送球するまでの時間を t_1 とする. 捕手がボールを投げ出してからそのボールが二塁ベースを通過するまでの時間を t_2 とする. $t_2 = \frac{s}{v} \text{ より}, \ t_2 = \frac{39.3}{35.6} = 1.104\cdots \text{ [s]}$ よって, $t_1 + t_2 = 2.12 + 1.104\cdots = 3.22 \text{ [s]}$ 走者の盗塁時間が 3.32 秒であるのに対して,投手の投球から捕手の送球が二塁ベースを 通過するまでの時間が 3.22 秒であるので,時間的にはアウトになる.				
問 3.25	[4]	左は瞬間加速度-時間図,左は平均加速度-時間図				
問 3.26	[3]	加速度				
問 3.27	[2]					
問 3.28	[4]	加速度が一定				
問 3.29	[4]	m/s ²				
問 3.30	[4]					
問 3.31	[4]	ゼロ				
問 3.32	[1]	0				
問 3.33	右欄	式(3.11)と式(3.12)の両式から t を消去すると,				
		$x - x_0 = \frac{v^2 - {v_0}^2}{2a}$				
		なお、 $x_0 = 0$ である場合は、 $x = \frac{v^2 - {v_0}^2}{2a}$ である.				
問 3.34	[1]	加速度				
問 3.35	右欄	等速度運動				
問 3.36	右欄	等加速度運動				
問 3.37	右欄	放物運動,重力加速度 $(g = -9.80 \text{ [m/s}^2\text{]})$				
問 3.38	右欄	弾丸の自由落下運動の問題であり、鉛直方向の運動だけを考える。				
		鉛直上方を正とし、弾丸が落ちた高さ (y_0) を 0 m とする.				
		式(3.14)より、 $y = y_0 + v_{y0}t - \frac{1}{2}gt^2$				
		y_0 と v_{y_0} はいずれもゼロなので,これを t で解くと, $t = \sqrt{\frac{-2y}{g}}$ となる. 上式にそれぞれ両選手によって撃たれた弾丸の高さを入力すると, 選手 A: $t = \sqrt{\frac{-2y}{g}} = \sqrt{\frac{-2 \times (-1.5)}{9.80}} \stackrel{.}{=} 0.553 \text{ [s]}$ 選手 B: $t = \sqrt{\frac{-2y}{g}} = \sqrt{\frac{-2 \times (-1.6)}{9.80}} \stackrel{.}{=} 0.571 \text{ [s]}$ よって,選手 A の弾丸が選手 B の弾丸よりも早く着地する.				
問 3.39	右欄	ベクトルの加算(加法)より,				
		$v = v_1 + v_2 = 12 + 2 = 14.00 $ [m/s] 右向き				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
						
		v :				

		$v = v_1 + v_2 = 12 + (-1.5) = 10.50 [m/s]$ 右向き $v_1 + (-v_2)$ Ⅱ
問 3.40	右欄	三平方の定理より、 $v = \sqrt{v_1^2 + v_2^2} = \sqrt{12^2 + 2^2} = 12.17 \text{ [m/s]}$ エレベータの床面を基準面(0°)とすると、三角関数より、 $\theta = \tan^{-1}\left(\frac{12}{2}\right) = 80.5 \text{ [°]}$ ヒトは、エレベーターの中を 12.17 m/s の速さで、 $80.5^\circ \text{ の方向}(右上向き) \land 移動する.}$ v_1
問 3.41	右欄	ボールの初速度を v_x 水平速度を v_x 鉛直速度を v_y とする。三角関数より、 $v_x = v \cos 24^\circ = 14.33 \times 0.9135\cdots ≒ 13.09 \text{ [m/s]}$ $v_y = v \sin 24^\circ = 14.33 \times 0.4067\cdots ≒ 5.83 \text{ [m/s]}$
問 3.42	右欄	水平速度を v_x , 鉛直速度を v_y とする. 三角関数より, $\tan \theta = \frac{v_y}{v_x}, \ \theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{17.36}{28.20}\right) = 31.6 \ [°]$
問 3.43	右欄	あなたの合成速度を v 、水平速度 (あなたが左座席から右座席へ移動する速度) を v_1 、前方速度 (バスが前方へ移動する速度) を v_2 とする。 三平方の定理より、 $v = \sqrt{v_1^2 + v_2^2} = \sqrt{2.5^2 + 16.5^2} \stackrel{\cdot}{=} 16.69 \text{ [m/s]}$ バスの進行方向に対して右方向を X 軸 (0°) として反時計回りを正とすると,三角関数より、 $\tan\theta = \frac{v_2}{v_1}, \ \theta = \tan^{-1}\left(\frac{v_2}{v_1}\right) = \tan^{-1}\left(\frac{16.5}{2.5}\right) \stackrel{\cdot}{=} 81.4 \ [°] (右前方へ移動する)$
問 3.44	右欄	泳者の泳ぐ速さを v とし、泳者の泳ぐ方向は手前の此岸(水平線)を基準とする。 ① 泳者の泳ぐ速さは、三平方の定理より、 $v = \sqrt{v_1^2 + v_2^2} = \sqrt{3^2 + 2^2} \stackrel{\cdot}{=} 3.61 \text{ [m/s]}$ ② 泳者の泳ぐ方向は、三角関数より、 $\tan \theta = \frac{v_2}{v_1}, \ \theta = \tan^{-1}\left(\frac{v_2}{v_1}\right) = \tan^{-1}\left(\frac{2}{3}\right) \stackrel{\cdot}{=} 33.7 \text{ [°]}$ ③ $t = \frac{S}{v_2}$ より、 $t = \frac{100}{2} = 50.0 \text{ [s]}$ ④ $s = v_1 t$ より、 $s = 3 \times 50.0 = 150.0 \text{ [m]}$
問 3.45	右欄	左大腿長を r とし、三平方の定理より、 $r = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(5.1 - 2.9)^2 + (5.2 - 6.0)^2} = 2.34\cdots$ 1 単位の長さは 0.21 m であるため、上記で求められた値にその長さを乗じると、 $r = 2.34\cdots \times 0.21 = 0.492 \text{ [m]}$
問 3.46	 右欄	(計算式省略) 右前腕長: 0.374 [m] 左下腿長: 0.539 [m]

問 3.47	右欄	(計算式省略) 右大腿長:0.435 [m] 体幹長:0.734 [m] 問題の図面(例,カメラの撮影画面)から求められた左前腕長は、左前腕の長軸に対して垂直となる方向から示された図面ではないため、実際の長さを反映していない. 【知っておくと役に立つ!】 問題の投動作をはじめ、身体の回転(とくに部分の長軸回りの回転→"ひねり"または"回旋"と呼ぶ)が主体となる運動(打撃、体操、フィギュアスケート、格闘技など)の動作解析では、原則、二次元分析ではなく、三次元分析を行わなければならないことを知っておこう.				
問 3.48	右欄	各点の座標値のプロットと結線図 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
問 3.49	右欄	2点間の距離を D とすると、三平方の定理より、				
		$D = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(4.2 - (-0.8))^2 + (-2.4 - 3.4)^2} = 7.66$				
問 3.50	右欄	$8.3 - 1.4 = 6.90$ $6.90 \times 1.28 = 8.83$ [m]				
問 3.51	右欄	2.8 - 1.7 = 1.100 1.100 × 0.85 = 0.935 [m]				
問 3.52	右欄	飛行した距離を D とすると、三平方の定理より、 $D = \sqrt{\Delta x^2 + \Delta y^2} = \sqrt{(68.5 - 33.2)^2 + (7.3 - 22.0)^2} = 38.23\cdots$ $D = 38.23\cdots \times 5.8 = 222 \text{ [m]}$				
問 3.53	右欄	区間 位置の変化[m]				
		水平 鉛直 合成				
		P1-P2 3.3 1.1 3.48				
		P2-P3 1.8 2.6 3.16				
		走り高跳び選手の重心の位置の変化				
		P3				
		7				
		(E) P2 P1 世紀 4				
		₩ 4				
		3				
		0 1 2 3 4 5 6 7 8 9 水平位置(m)				

■ O E 4	/ ─#9						
問 3.54	右欄		水平位置 [m]	時刻[s]	10 m 間隔の 時間[s]	平均水平 速度[m/s]	
			0	0.00	1.020	F 10	
			10	1.93	1.930	5.18 9.52	
			20	2.98	0.970	10.31	
			30	3.95	0.970	10.53	
			40	4.90	0.930	10.64	
			50	5.84	0.940	10.75	
			60	6.77	0.930	10.75	
			70	7.70	0.940	10.64	
			80	8.64	0.970	10.31	
			90	9.61	1.000	10.00	
			100	10.61	1.000	10.00	
		100	、 ス	<u>プリンタ</u> ーの	水平位置-時間	司図	
		90					
		80					
		70			/		-
		(田) 鮰 中 片 谷 40)		/		
		 					
		₹ 40)				-
		30					_
		20	-				-
		10					_
		(]
			0 2	4	6 8 時間(s)	10 1	12
					~31e4/9)		
			ス	プリンターの	水平速度-時間	1図	
		12					
		10		*	• • •		
		10					
		(v) 8	/				
		展(第					
		水平速度(m/s)	-/-				
		太	<i>f</i>				
		4	· / -				
		2	/				
		0	<u> </u>				
			0 2	4	6 8	10 1	.2
					時間(s)		

問 3.55

右欄

① $v_{x2}=10.80~\mathrm{[m/s]}$ (水平方向は等速度運動を行う), $v_{y2}=0~\mathrm{[m/s]}$

② 式(3.13)より、 $v_y = v_{y1} - gt_2$

 v_v は 0 m/s であるので,

$$t_2 = \frac{V_{y1}}{g} = \frac{8.9}{9.80} = 0.908 \dots = 0.908 \text{ [s]}$$

③ 式(3.14)より、 $y_2 = y_1 + v_{y1}t_2 - \frac{1}{2}gt_2^2$

 $y_2 = 1.98 + 8.9 \times 0.908 \dots - \frac{1}{2} \times 9.80 \times 0.908 \dots^2 = 6.02 \text{ [m]}$

④ 式(3.16)より、 $x_2 = x_1 + v_{x1}t_2$

 $x_2 = 0.34 + 10.8 \times 0.908 \dots = 10.15 \text{ [m]}$

⑤ 式(3.14)より、 t_3 について解くと、

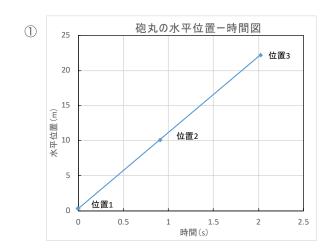
$$t_3 = \frac{v_{y1} \pm \sqrt{v_{y1}^2 + 2gy_1}}{g} = \frac{8.9 \pm \sqrt{8.9^2 + 2 \times 9.80 \times 1.98}}{9.80}$$

 $t_3 = -0.200 \cdots [s], t_3 = 2.016 \cdots [s]$

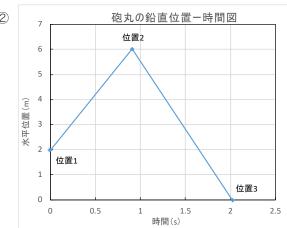
砲丸を投げ出した後の滞空時間であるため、正解は、 $t_3 = 2.02$ [s]

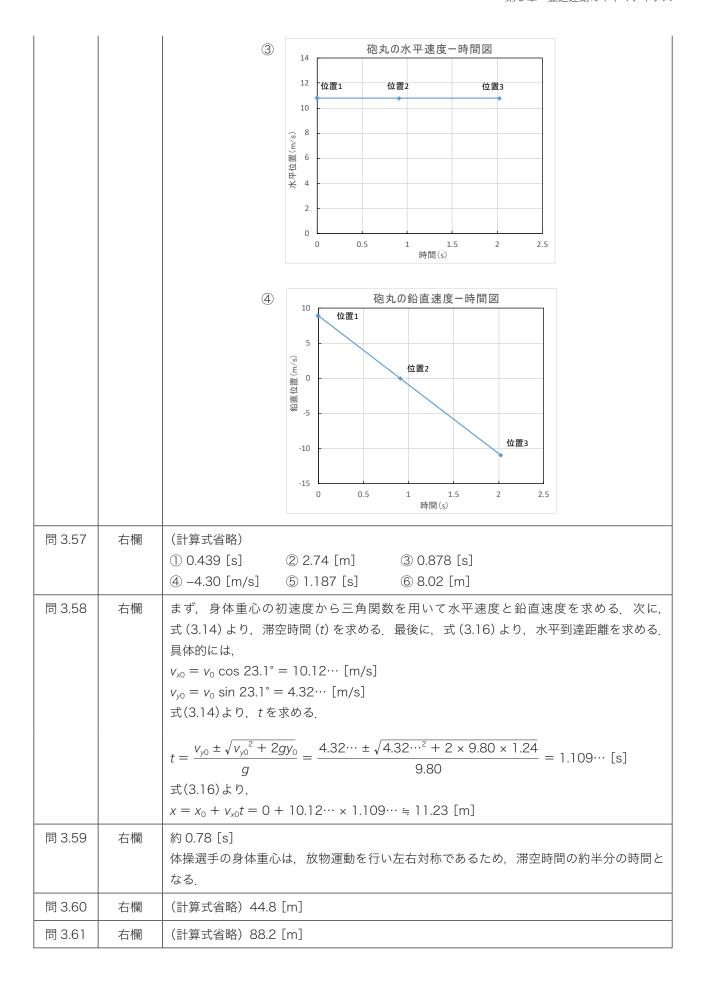
⑥ 式(3.16)より、 $x_3 = x_1 + v_{x_1}t_3$

 $x_3 = 0.34 + 10.8 \times 2.016 \dots = 22.2 \text{ [m]}$


⑦ $v_{x3} = 10.80$ [m/s] (水平方向は等速度運動を行う)

式(3.13)より、 $v_{y3} = v_{y1} - gt_3$


 $v_{y3} = 8.9 - 9.80 \times 2.016 \dots = -10.90 \text{ [m/s]}$


問 3.56

右欄

2

問 3.62	[1]	実際には離地時の重心の鉛直速度と高さと重力加速度によって決まる. しかし, 重力加速度は定数のため, 鉛直速度と高さによって決まるといってよい.					
問 3.63	右欄	式(3.13)より、 $v_y = v_{y0} - gt$ v_y は 0 m/s であるので、 $t = \frac{v_{y0}}{g} = \frac{7}{9.80} = 0.714 [s]$					
問 3.64	右欄	式(3.13)より、 $v_y = v_{y0} - gt$ v_y は 0 m/s であるので、 $v_{y0} = gt = 9.80 \times 0.54 = 5.29$ [m/s]					
問 3.65	右欄	鉛直上方を正とし、5 m の高さを 0 m $(y_0 = 0)$ とする。初速度 v_{y_0} は 0 m/s である。 式(3.14) より、 $y = y_0 + v_{y_0}t - \frac{1}{2}gt^2$ $-5 = 0 + 0 - \frac{1}{2} \times 9.80 \times t^2$ $t = \sqrt{\frac{-2y}{a}} = \sqrt{\frac{5}{4.90}} = 1.010 [s]$					
問 3.66	[1]	放物運動(軌道)は投射時の位置と速度で決まらない					
問 3.67	右欄	① $t_1 \sim t_2$ ② $t_3 \sim t_6$ ③ $t_2 \sim t_3$ ④ $t_1 \sim t_2$ ⑤ $t_3 \sim t_4$ ⑥ 野球の三塁走者のホームスチール $ \begin{array}{cccccccccccccccccccccccccccccccccc$					
問 3.68	右欄	1 画像録画可能な時間を求め、求められた値に 16 画像を掛けて、距離で割る. $\frac{18}{\left(\frac{1}{30}\right)\times 16} = 33.8 \text{ [m/s]}$					

	第4章 回転運動のキネマティクス						
問題番号	解答番号	解答,計算式,補足など					
問 4.1	[2]	×					
問 4.2	[2]	×					
問 4.3	[1]	0					
問 4.4	[3]	等角速度					
問 4.5	[4]	等速円					
問 4.6	[1]	等角加速度					
問 4.7	[2]	左は瞬間角速度-時間図,右は平均角速度-時間図					
問 4.8	[4]	角加速度					
問 4.9	[3]	右手					
問 4.10	[2]	角変位					
問 4.11	右欄	$\Delta\theta = \omega \Delta t \& \mathcal{D}, \Delta\theta = 15 \times 5 = 75 \text{[rad]}$ $75 \times \frac{180}{\pi} = 4297.18 \dots = 43.0 \times 10^2 \text{[°]}$					
問 4.12	右欄	$360 \times 10 = 3600 [^{\circ}]. \Delta t = \frac{\Delta \theta}{\omega} \text{\downarrow 0}, \Delta t = \frac{3600}{650} = 5.54 [\text{s}]$					
問 4.13	右欄	$\Delta\theta = \omega \Delta t$ より、 $\Delta\theta = 15 \times 1.71 = 25.65$ [rad]. $25.65 \times \frac{180}{\pi} = 1469.6$ … [°] $\frac{1469.6}{360} = 4.08$ 回転					
問 4.14	[2]	×					
問 4.15	右欄	0 [rad/s²], 6 回転					
問 4.16	[1]						
問 4.17	[5]	紙面に直交しあなたの方向					
問 4.18	右欄	$1085 \times \frac{\pi}{180} = 18.93 \dots \text{ [rad/s]}.$ $v = \omega r = 18.93 \dots \times 0.82 = 15.53 \text{ [m/s]}$					
問 4.19	右欄	$\omega = \frac{v}{r} = \frac{38}{1.18} = 32.2 \text{ [rad/s]}$					
問 4.20	右欄	$r = \frac{v}{\omega} = \frac{52}{35} = 1.486 \text{ [m]}$					
問 4.21	右欄	$650 \times \frac{\pi}{180} = 11.34 \dots \text{ [rad/s]}$ $v = \omega r = 11.34 \dots \times 0.9 = 10.21 \text{ [m/s]}$					
問 4.22	右欄	$360 \times 10 = 3600 [\degree]. 3600 \times \frac{\pi}{180} = 62.83 \cdots [\text{rad}]$ $\omega = \frac{\Delta \theta}{\Delta t} = \frac{62.83 \cdots}{4.8} = 13.09 [\text{rad/s}]$					
問 4.23	右欄	$360 \times \frac{180}{60} = 1080 [^{\circ}/s]. 1080 \times \frac{\pi}{180} = 18.84 \cdots [rad/s]$ $18.84 \cdots \times 0.33 = 6.22 [m/s]$					
問 4.24	右欄	500 回転					

問 4.25	右欄	$\alpha = \frac{\Delta w}{\Delta t} = \frac{(9.87 - 5.82)}{4} = 1.013 \text{ [rad/s}^2\text{]}$
問 4.26	[2]	減少する
問 4.27	右欄	$\Delta \omega = \alpha \Delta t = 5 \times 0.5 = 2.50 \text{ [rad/s]}$
		$\omega = \omega_0 + \alpha \Delta t = 6 + 2.50 = 8.50 $ [rad/s]
問 4.28	右欄	$\omega = \omega_0 + \alpha \Delta t = 6 - 2.50 = 3.50 \text{ [rad/s]}$
問 4.29	右欄	$360 \times \frac{20}{60} = 120 [^{\circ}/s] 120 \times \frac{\pi}{180} = 2.09 \cdots [rad/s]$
		$t = \frac{\omega}{\alpha} = \frac{2.09\cdots}{5} = 0.419 \text{ [s]}$
問 4.30	右欄	式(4.12)と式(4.13)の両式から t を消去すると,
		$\theta - \theta_0 = \frac{\omega^2 - {\omega_0}^2}{2\alpha}$
		なお, $\theta_0=0$ である場合は, $\theta=\frac{\omega^2-{\omega_0}^2}{2\alpha}$ である.
問 4.31	右欄	$5 \times 360 = 1800 [^{\circ}] 1800 \times \frac{\pi}{180} = 31.41 \cdots [\text{rad}]$
		【問 4.30】で求められた式より、
		$w = \sqrt{2\alpha\theta + \omega_0^2} = \sqrt{2 \times 2.85 \times 31.41 \dots + 3.2^2} = 13.76 \text{ [rad/s]}$ $w = \omega_0 = 13.76 \dots = 3.2$
		$t = \frac{\omega - \omega_0}{\alpha} = \frac{13.76 \cdots - 3.2}{2.85} = 3.70 \text{ [s]}$
問 4.32	右欄	$\omega = \frac{v}{r} = \frac{2.8}{1.8} = 15.56 \text{ [rad/s]}$
問 4.33	右欄	$F = m \frac{v^2}{r} \sharp \mathcal{D}$
		$v = \sqrt{\frac{Fr}{m}} = \sqrt{\frac{3450 \times 1.96}{7.26}} = 30.5 \text{ [m/s]}$
問 4.34	右欄	$\Delta \omega = \alpha \Delta t = 25.4 \times 0.69 = 17.53 \text{ [rad/s]}$
問 4.35	右欄	① $8 \times 360 \times \frac{\pi}{180} = 50.26$ [rad]. 【問 4.30 】で求められた式より、
		$\alpha = \frac{\omega^2 - {\omega_0}^2}{2(\theta - \theta_0)} = \frac{19.8^2 - 3.4^2}{2(50.26\dots - 0)} = 3.78 \text{ [rad/s}^2\text{]}$
		② $t = \frac{\omega - \omega_0}{\alpha} = \frac{19.8 - 3.4}{3.78 \dots} = 4.33 \text{ [s]}$
問 4.36	右欄	$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{\omega - \omega_0}{\Delta t} = \frac{22.4 - 80.5}{0.12} = -484 \text{ [rad/s}^2\text{]}$
問 4.37	右欄	$A_1 = 30.0 [^{\circ}]$ $A_2 = 55.0 [^{\circ}]$ $A_3 = 90.0 [^{\circ}]$ $A_4 = 120.0 [^{\circ}]$ $A_5 = 150.0 [^{\circ}]$ $A_6 = 210 [^{\circ}]$ $A_7 = 285 [^{\circ}]$ $A_8 = 340 [^{\circ}]$
問 4.38	右欄	$A_4 = 30.0 [^{\circ}] A_6 = 120.0 [^{\circ}] A_8 = 250 [^{\circ}] A_2 = 325 [^{\circ}]$
問 4.39	右欄	$\Delta\theta = 249 - 38 = 211 \ [^{\circ}]$ $\omega = \frac{\Delta\theta}{\Delta t} = \frac{211}{0.3} = 28.3 \ [rad/s]$
問 4.40	右欄	B - A = 58.0 - 23.0 = 35.0 [°]
問 4.41	 右欄	X 軸から反時計回りに測った右大腿の角度を θ とする.
		$H - K = (3.7 - 5.0, 3.2 - 2.1) = (-1.3, 1.1) tan^{-1} \left(\frac{1.1}{1.3}\right) = 40.23 \cdots [^{\circ}]$
		(1.3) θ = 180.0 - 40.23··· ≒ 139.8 [°](分度器計測:140.0 [°])
		1

問 4.42	右欄	右膝関節角をθとする. 【解法①】(三角関数)		
		H - K = $(3.7 - 5.0, 3.2 - 2.1)$ = $(-1.3, 1.1)$. $tan^{-1} \left(\frac{1.1}{1.3}\right) = 40.23 \cdots$ [°]		
		$K - A = (5.0 - 3.8, 2.1 - 1.1) = (1.2, 1.0), tan^{-1} \left(\frac{1.0}{1.2}\right) = 39.80 \cdots [^{\circ}]$		
		$\theta = 40.23\cdots + 39.80\cdots = 80.0 [°]$		
		【解法②】(内積)		
		膝から股関節へのベクトルを \mathbf{u} , 膝から足関節へのベクトルを \mathbf{v} とすると,		
		それぞれのベクトルは,		
		$\mathbf{u} = (3.7 - 5.0, 3.2 - 2.1) = (-1.3, 1.1)$		
		$\mathbf{v} = (3.8 - 5.0, 1.1 - 2.1) = (-1.2, -1.0)$		
		$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} } = \frac{u_x v_x + u_y v_y}{\sqrt{u_x^2 + u_y^2} \sqrt{v_x^2 + v_y^2}} \sharp \flat,$		
		$\theta = \cos^{-1}\left(\frac{(-1.3 \times (-1.2)) + (1.1 \times (-1.0))}{\sqrt{(-1.3)^2 + 1.1^2}\sqrt{(-1.2)^2 + (-1.0)^2}}\right) = 80.0 \ [^{\circ}]$		
問 4.43	右欄	【問 3.45】(計算式省略) 340 [°]		
		【問 3.46】(計算式省略) 右前腕: 261 [°] 左下腿: 239 [°]		
		【問 3.47】(計算式省略) 体幹: 103.4 [°] 右大腿: 219 [°]		
問 4.44	右欄	(計算式省略) 下腿の角度 1:11.31 [°] 2:85.6 [°] 3:170.5 [°]		
問 4.45	右欄	膝から股関節へのベクトルを \mathbf{u} , 膝から足関節へのベクトルを \mathbf{v} とすると,		
		それぞれのベクトルは,		
		$\mathbf{u} = (5 - 50, 158 - 86) = (-45, 72)$		
		$\mathbf{v} = (18 - 50, 10 - 86) = (-32, -76)$		
		$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} \mathbf{v} } = \frac{u_x v_x + u_y v_y}{\sqrt{u_x^2 + u_y^2} \sqrt{v_x^2 + v_y^2}} \sharp \mathcal{V},$		
		$\theta = \cos^{-1}\left(\frac{(-45 \times (-32)) + (72 \times (-76))}{\sqrt{(45)^2 + 72^2}\sqrt{32^2 + (76)^2}}\right) = 125.2 [^{\circ}]$		
		$\sqrt{(-45)^2 + 72^2} \sqrt{-32^2 + (-76)^2} = 125.2 \text{ L}$		
問 4.46	右欄	(計算式省略) θ _E ≒ 78.7 [°] θ _{TK} = 90.0 [°]		
問 4.47	右欄	ランニング中の股関節・膝関節の角度一時間図		
		180		
		140		
		120 © 100		
		概 80		
		40		
		20 0		
		0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 時間(s)		
		→ 股関節角度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		

	100							
問 4.48	右欄			$\omega_{\scriptscriptstyle au}$	$\omega_{ extsf{S}}$	$\omega_{\scriptscriptstyle extsf{T}}$	ω_{s}	
			時間 [s]	[°/s]	[°/s]	[rad/s]	[rad/s]	· 時刻 [s]
			0.00-0.10	-10.00	-230	-0.1745	-4.01	0.05
			0.10-0.20	550	250	9.60	4.36	0.15
			0.20-0.30	270	750	4.71	13.09	0.25
			0.30-0.40	-380	-220	-6.63	-3.84	0.35
			0.40-0.50	-280	-390	-4.89	-6.81	0.45
			0.50-0.60	-160.0	-160.0	-2.79	-2.79	0.55
			ランコ 15	ニング中の股	関節・膝関	節の角速原	度一時間図	
			10 (s/ps/) 5 5 -10 0 0.05	5 0.1 0.15		0.3 0.35 0.4 間(s)	4 0.45 0.5	0.55 0.6
					節角速度		速度	
問 4.49	 右欄							
	100		時間 [s]	$lpha_{\scriptscriptstyle extsf{T}}$	$lpha_{ extsf{S}}$	$\alpha_{\scriptscriptstyle T}$	$lpha_{ extsf{S}}$	時刻 [s]
				[°/s²]	[°/s²]	[rad/s²]	[rad/s²]	
			0.05-0.15	5600	4800	97.7	83.8	0.10
			0.15-0.25	-2800	5000	-48.9	87.3	0.20
			0.25-0.35	-6500	-9700	-113.4	-169.3	0.30
			0.35-0.45	1000	-1700	17.45	-29.7	0.40
			0.45-0.55	1200	2300	20.9	40.1	0.50
				ᄾᄺᅩᇫᇛᇹ	明佐 叶巴	* ^	ф n+ n-	va
			ランニ ¹⁵⁰	ング中の股	判即•滕関〕	節の角加速	度一時間と	<u> </u>
			100					
			50 0 -50 -100 -200 0 0 0	.05 0.1 0	0.15 0.2	0.25 0.3	0.35 0.4	0.45 0.5
			Syper) 0		時	間 (s)		0.45 0.5
			Syper) 0	.05 0.1 (時			0.45 0.5
問 4.50		$6000 \times \frac{\pi}{180} =$	-50 型類 -100 -200 0 0	—— 股関節	角加速度	間 (s) • 膝関節角	加速度	

		第5章 並進運動のキネティクス			
問題番号	解答番号	解答,計算式,補足など			
問 5.1	[2]	×			
問 5.2	[1]	0			
問 5.3	[1]	0			
問 5.4	[2]	×			
問 5.5	[3]	重力			
問 5.6	[1]	0			
問 5.7	[4]	kg·m/s²			
問 5.8	[3]	作用点			
問 5.9	[2]	×			
問 5.10	[3]	9.81			
問 5.11	右欄	$W = mg = 75 \times 9.80 = 735 [N]$			
問 5.12	右欄	$m = \frac{W}{g} = \frac{1360}{9.80} = 138.8 \text{ [kg]}$			
問 5.13	[3]	月と地球で同じである			
問 5.14	[1]	月よりも地球で大きい			
問 5.15	右欄	$W = mg = \frac{900}{9.80} \times 3.75 = 344 \text{ [N]}$			
問 5.16	[2]	運動量の変化の法則			
問 5.17	右欄	$F=ma$ は、力が一つしか作用しない場合の運動方程式 $\Sigma F_i=ma_{\rm cm}$ は、力が二つ以上作用する場合の運動方程式 $F=ma$ は、高校までに習ったなじみ深い運動方程式であった。この方程式は、物体を、質量をもつが大きさをもたない(つまり "形がなく見えない")点とみなした「質点モデル」を 適用した場合に用いられる (通常、質点には一つの力しか作用しないと想定している)。一方、二つ以上 (複数) の力が物体に同時に作用する場合、つまり物体を質量も大きさももつ ("形があり見える")「剛体モデル」とみなした場合は、 $\Sigma F_i=ma_{\rm cm}$ を用いる必要がある。			
問 5.18	右欄	地球では、摩擦力や、空気や水による抵抗力が作用するため			
問 5.19	右欄	その物体に力が作用しないか,または複数の力が作用してもそれらの力がつり合っている (力の多角形が閉じる)とき			
問 5.20	[3]	[1][2]はともに加速度運動であり,[1]は加速運動,[2]は減速運動である.			
問 5.21	[2]				
問 5.22	右欄	F ₂ F ₄ F ₄ 合力ベクトル F ₁			

問 5.23	 右欄	物体の重力: W = 10 × 9.80 = 98.0 [N] 下向き
		物体に作用する三つの力と重力のグラフ ※原点を物体の重心とする。
		F ₃ (300 N, 45°)
		(2)
		-300 -200 -100 100 200 300 W (-98 N, 270°)
		カの多角形による合力ベクトルの作図
		水平力(N)
問 5.24	右欄	物体の重力: W = 5 × 9.80 = 49.0 [N] 下向き
		物体に作用する三つの力と重力のグラフ
		F ₁ (25 N, 40 N) F ₃ (90 N, -45 N) F ₃ (90 N, -45 N) F ₃ (90 N, -45 N)
		-150 -100 -50 50 100 合力ベクトル F ₂ (-35 N, -70 N) W (0 N, -49 N)
		カの多角形による合力ベクトルの作図 -150 水平力(N)
問 5.25		等速度運動であるため、鉛直力 (F) は、 $F = mg = 6 \times 9.80 = 58.8$ [N]
問 5.26	右欄	式(5.2) より、 $a = \frac{\Sigma F}{m} = \frac{300}{0.1} = 3.00 \times 10^3 \text{ [m/s}^2\text{]}$
問 5.27	右欄	運動量と力積の関係(式 5.15b)より,
		$\Sigma F \Delta t = m \Delta v = m v_2 - m v_1 = 100 \times 0 - 100 \times 8 = -800 [N·s]$ (選手が走っている方向の反対方向に 800 [N·s])
問 5.28	右欄	式(5.2) より、 $a = \frac{\Sigma F}{m} = \frac{F - W}{m} = \frac{935 - (70 \times 9.80)}{70} = 3.56 \text{ [m/s}^2\text{]}$
問 5.29	右欄	
		② $\Sigma F \Delta t = m \Delta v $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $$
		$ ≡ 9.92 \text{ [m/s]} $ $ ≡ tct, a = \frac{\Delta v}{\Delta t} $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
		または、 $a = \frac{\Delta t}{\Delta t}$ より、 $\Delta V = a\Delta t = 61.98 \cdots \times 0.16 = 9.917 \cdots = 9.92 [m/s]$ ③ 開始時点の砲丸の水平速度を v_0 とし、終了時点の水平速度を v_e と式(3.11)より、
		$v_{\rm e} = v_0 + \Delta v = 0.8 + 9.917 \dots = 10.72 \text{ [m/s]}$
		④ 運動量と力積の関係式(5.15b)より, $\Sigma F\Delta t = m\Delta v = 7.26 \times 9.917 \cdots = 72.0 \text{ [N·s]}$

問 5.30	右欄	① 選手 A の質量、速度、運動量をそれぞれ m_A 、 v_A 、 p_A 、選手 B の質量、速度、運動量をそれぞれ m_B 、 v_B 、 p_B とすると、 $p_A = m_A v_A = 75 \times 9.0 = 675 \text{ [kg·m/s]}$ $p_B = m_B v_B = 90 \times 8.3 = 747 \text{ [kg·m/s]}$ ② 運動量が大きい物体を止めるためには大きな力積 ($p_A < p_B$) を必要とするため、B が正解 ③ 式(5.15b)より、 $\Sigma F \Delta t = m v_2 - m v_1 = 75 \times 0 - 75 \times 9.0 = -675 \text{ [N·s]}$ ④ $\Sigma F \Delta t = m \Delta v$ 、 $\Delta t = \frac{m v_2 - m v_1}{F} = \frac{75 \times 0 - 75 \times 9.0}{-950} \leftrightarrows 0.711 \text{ [s]}$			
問 5.31	右欄	① 選手 A の質量、速度、運動量をそれぞれ m_A 、 v_A 、 p_A 、 選手 B の質量、速度、運動量をそれぞれ m_B 、 v_B 、 p_B とすると、 $p_A = m_A v_A = 95 \times 4.1 = 389.5 = 390 [kg \cdot m/s]$ $p_B = m_B v_B = 78 \times (-5.4) = -421.2 = -421 [kg \cdot m/s]$ 運動量が小さいほうへ動くので、左方向(向き)が正解. ② 衝突直後の 2 人の速度を v とし、衝突後の運動量を p_{A+B} とすると、運動量保存の法則より、 $p_A + p_B = p_{A+B}$ $m_A v_A + m_B v_B = (m_A + m_B)v$ よって、 $v = \frac{m_A v_A + m_B v_B}{m_A + m_B} = \frac{389.5 - 421.2}{95 + 78} = -0.179 [m/s] $			
問 5.32	右欄	① 選手 A の質量、速度、運動量をそれぞれ m_A 、 v_A 、 p_A 、選手 B の質量、速度、運動量をそれぞれ m_B 、 v_B 、 p_B とすると、 $p_A = m_A v_A = 105 \times 6.4 = 672 \text{ [kg·m/s]}$ $p_B = m_B v_B = 89 \times 7.4 = 658.6 \cdots = 659 \text{ [kg·m/s]}$ 三角関数より、 $\tan \theta = \frac{p_A}{p_B}$ 、 $\theta = \tan^{-1}\left(\frac{p_A}{p_B}\right) = \tan^{-1}\left(\frac{672}{658.6 \cdots}\right) = 45.6 \text{ [°]}$ ② 衝突直後の2人の速度を v とし、衝突後の運動量を p_{A+B} とすると、運動量保存の法則より、 $p_A + p_B = p_{A+B}$ ここで、 $p_{A+B} = \sqrt{p_A^2 + p_B^2} = \sqrt{672^2 + 658.6 \cdots^2} = 940.9 \cdots \text{ [kg·m/s]}$ よって、 $v = \frac{p_{A+B}}{m_A + m_B} = \frac{940.9 \cdots}{105 + 89} = 4.85 \text{ [m/s]}$			
問 5.33	右欄	式(5.10)より、 $f_{\text{max}} = \mu F_{\text{N}}$ $\mu = \frac{f_{\text{max}}}{F_{\text{N}}} = \frac{2.88}{4.30} = 0.669 \dots = 0.670$			
問 5.34	右欄	$f_{\text{max}} = \mu F_{\text{N}} = 0.669 \dots \times 1750 = 1172 \text{ [N]}$			
問 5.35	右欄	$f_{\text{max}} = \mu F_{\text{N}}$ より、 $f_{\text{max}} = 0.669 \cdots \times 2357 = 1579 \text{ [N]}$ 水平力 1525 N よりも大きいため、滑らない			
問 5.36	右欄	$F_{\rm N} = \frac{f_{\rm max}}{\mu} = \frac{1100}{0.669\cdots} = 1642 [{\rm N}]$			
問 5.37	右欄	[1], [3]			
問 5.38	右欄	[1] 宇宙空間では重量はなくなる。しかし、慣性はなくならないため(つまり、F = ma の関係は宇宙空間でも成立するため)、ボールを加速するために必要な力は質量の大きいボールほど大きい。			

問 5.39	右欄	$F = ma = 0.5 \times 18 = 9.00 [N]$
問 5.40	右欄	7 kg の砲丸の力積: $L = F\Delta t = 350 \times 0.5 = 175$ [N·s] 4 kg の砲丸の力積: $L = F\Delta t = 300 \times 0.4 = 120$ [N·s] よって、7 kg の砲丸
問 5.41	[4]	内力も外力もフリーボディの運動に影響を与える
問 5.42	[3]	フリーボディに作用する外力と外トルク
問 5.43	右欄	斜面:摩擦あり
問 5.44	右欄	飛行方向 排進力 (ジェット順射による) 重力 ジャンボジェット機が高度を保っているので、重力と揚力がつり合っているため落ちない。 また、抗力と推進力がつり合っているため等速度運動を行う。
問 5.45	右欄	① 右手系の二次元座標系 (XY 座標系) を設定する. $F_{\text{N}} = 520 [\text{N}]$ $V = -1270 [\text{N}]$ $V = -730 [\text{N}]$ ② 式(5.10) より、 $f_{\text{max}} = \mu F_{\text{N}}$ $f_{\text{max}} = 0.23 \times 2000 = 460 [\text{N}]$ $C = 0.23 \times 20$

		与えた水平力が最大静止摩擦力を超えない限り、与えた水平力の大きさと摩擦力の大きさは等しい。 ⑦ 式(5.2)より、 $\Sigma F = ma_{cm}$ $520 - 520 = 74.5 \times a_{cm}, \ a_{cm} = 0 \ [m/s^2]$ $F_{H} > f_{max}$ であるため、跳び箱は動かない. ⑧ 滑らない
問 5.46	右欄	鉛直上方を正とする. バーベルに作用する重力: $W=mg=100\times(-9.80)=-980$ [N] $\Sigma F=ma$ より, $F+W=ma,\ F=ma-W=100\times1.5-(-980)=1130$ [N]
問 5.47	右欄	運動量と力積の関係を使う。右方向を正とする。 飛んできたボール (その速度を v_1 とする)を受け止め、最終的に止める (静止させる) ため、ボールの最終速度 (v_2 とする)、つまり運動量は 0 kg·m/s となる。 よって、運動量と力積の関係より、 $F = \frac{mv_2 - mv_1}{\Delta t} = \frac{0 - (0.145 \times 42)}{0.5} = -12.18 \ [N]$
問 5.48	右欄	ボールを投げ出したときの速度を $v_1=5$ [m/s], リリース 2 秒後のボール速度を v_2 とする. 運動量と力積の関係より(式 5.15b), $\Sigma F \Delta t = m v_2 - m v_1$ 20 × 2 = 2 × $(v_2 - 5)$, $v_2 = 25.0$ [m/s]
問 5.49	右欄	式(5.11)より、 $f_{\text{KIN}} = \mu' F_{\text{N}}$ $f_{\text{KIN}} = 0.251 \times (2 \times 9.80) = 4.9196 \text{ [N]}$ $\Sigma F = ma$ より、 $20 - 4.9196 = ma$. $a = \frac{20 - 4.9196}{2} = 7.5402 \text{ [m/s}^2\text{]}$ $a = \frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{\Delta t}$, $v_2 = v_1 + a\Delta t$ より、 $v_2 = 5 + 7.5402 \times 2 = 20.1 \text{ [m/s]}$
問 5.50	[3]	N⋅s
問 5.51	[3]	
問 5.52	[3]	式(5.15b) より、速度は、 $[1]: 1500 \times 0.55 = 10 \times v, v = 825/10 = 82.5 \text{ [m/s]}$ $[2]: 4000 \times 0.20 = 10 \times v, v = 800/10 = 80.0 \text{ [m/s]}$ $[3]: 2500 \times 0.34 = 10 \times v, v = 850/10 = 85.0 \text{ [m/s]}$ $[4]: 3500 \times 0.24 = 10 \times v, v = 840/10 = 84.0 \text{ [m/s]}$ となり、 $[3]$ が一番大きい。
問 5.53	右欄	右方向を正とする. $\Sigma F = ma$ より、 $a = \frac{\Sigma F}{m} = \frac{124}{80} = 1.550 \text{ [m/s}^2\text{]}$ $v = v_0 + at$ より、 $v = 0 + 1.550 \times 4.3 = 6.67 \text{ [m/s]}$
問 5.54	右欄	右方向を正とする. $a = \frac{F}{m} = \frac{800}{400} = 2.00 \text{ [m/s}^2\text{]}$ $v = v_0 + at \text{ょり, } v = 0 + 2.00 \times 3 = 6.00 \text{ [m/s]}$

問 5.55	右欄	式(5.11)より、 $f_{\text{KIN}}=0.025\times(400\times9.80)=98.0$ [N] 運動量と力積の関係より、 $\Sigma F\Delta t=mv_2-mv_1$
		ここで、 v_1 は 0 m/s であるため、 $v_2 = \frac{\Sigma F \Delta t}{m} = \frac{(800 - 98.0) \times 3}{400} = 5.27 \text{ [m/s]}$
問 5.56	右欄	水平方向の力を F _H とすると,
		$\cos 30^{\circ} = \frac{F_{H}}{800}$ $F_{H} = 800 \cos 30^{\circ} = 692.82 \cdots [N]$
		$a = \frac{F}{m} \text{ th, } a = \frac{692.82 \cdots}{400} = 1.732 \cdots \text{ [m/s}^2\text{]}$
		$v = v_0 + at \sharp 0, \ \ v = 0 + 1.732 \dots \times 3 = 5.20 [\text{m/s}]$
問 5.57	[2]	×
問 5.58	右欄	フリーボディダイアグラム(FBD)を描く(図).
		FN
		f F _X
		F_{Y} W $\theta = 20 [°]$
		程式は、 $\Sigma F_{\rm X}=ma_{\rm X}$ より、斜面に平行な加速度 $(a_{\rm X})$ を求める。
		$a_{\rm X} = \frac{\sum F_{\rm X}}{m}$
		$W = mg = 400 \times 9.80 = -3920$ [N] (正負の符号は方向を考慮.以下同様)
		$F_X = 3920 \sin 20^\circ = 1340.71 \cdots [N]$
		$F_{\rm Y} = 3920 \cos 20^{\circ} = -3683.59 \cdots [N]$ $f_{\rm KIN} = \mu' F_{\rm N} = 0.05 \times -3683.59 \cdots = -184.17 \cdots [N]$
		よって,
		$a_{\rm X} = \frac{\sum F_{\rm X}}{m} = \frac{F_{\rm X} + f_{\rm KIN}}{m} = \frac{1340.71\dots - 184.17\dots}{400} = 2.89 \text{ [m/s}^2\text{]}$
問 5.59	 右欄	パットの質量を $m_{ m ball}$ ボールの質量を $m_{ m ball}$ とする.
(P) 0.00	7日 [[宋]	バットの資産と Thomas が
		ら、以下の式が成り立つ。
		$m_{\text{bat}}v_{\text{1-bat}} + m_{\text{ball}}v_{\text{1-ball}} = m_{\text{bat}}v_{\text{2-bat}} + m_{\text{ball}}v_{\text{2-ball}}$
		上式を、V _{2-ball} で解くと、
		$V_{2-\text{ball}} = \frac{m_{\text{bat}} V_{1-\text{bat}} + m_{\text{ball}} V_{1-\text{ball}} - m_{\text{bat}} V_{2-\text{bat}}}{m}$
		$v_{2-ball} = \frac{0.9 \times 30 + 0.15 \times 0 - 0.9 \times 23}{0.15} = 42.0 \text{ [m/s]}$
問 5.60	右欄	$p_{A} = 80 \times 6 = 480 \text{ [kg·m/s]}$
		$p_{\rm B} = 70 \times 8 = 560 [\text{kg·m/s}]$
		三平方の定理より、
		$p_{AB} = \sqrt{p_A^2 + p_B^2} = \sqrt{480^2 + 560^2} = 738 \text{ [kg·m/s]}$ 三角関数より,
		$\tan \theta = \frac{p_B}{p_A}, \theta = \tan^{-1} \left(\frac{p_B}{p_A} \right) = \tan^{-1} \left(\frac{560}{480} \right) = 49.4 [°]$
問 5.61	[1]	kg·m/s

問 5.62	[4]	
問 5.63	[3]	物体に発揮された力とその作用時間
問 5.64	右欄	$Ft = 80 \times 8 = 640 \text{ [N·s]}$
問 5.65	右欄	選手 A の質量,速度,運動量をそれぞれ m_A , v_A , p_A ,選手 B の質量,速度,運動量をそれぞれ m_B , v_B , p_B とする.両者の運動量は等しい場合を考える. $p_A = p_B, \ m_A v_A = m_B v_B$ $v_B = \frac{m_A v_A}{m_B} = \frac{100 \times 8}{80} = 10.00 \ [\text{m/s}]$
問 5.66	右欄	$L = Ft = 45 \times 0.2 = 9.00 \text{ [N·s]}$
問 5.67	右欄	鉛直上方を正とし、ビルの屋上を 0 m (y_1) とし、地面に衝突する速度を v_2 とする。 式 (3.14) より、 $y=y_1+v_{y1}t-\frac{1}{2}gt^2$ y_1 と v_1 はいずれもゼロなので、 $-10=0+0-\frac{1}{2}gt^2$ これを t で解くと、 $t=\sqrt{\frac{-2y}{g}}$ となる。よって、 $t=\sqrt{\frac{-2y}{9.80}}=1.428\cdots$ [s] 式 (3.13) より、 $v_2=v_1-gt=0-(9.80\times1.428\cdots)=-14$ [m/s] 運動量と力積の関係より、 $\Sigma F\Delta t=mv_2-mv_1$ $F=\frac{mv_2-mv_1}{\Delta t}=\frac{60\times(-14)-60\times0}{0.01}=-84000=-8.40\times10^4$ [N] $\frac{-84000}{9.80}=-8571.42\cdots = -8.57\times10^3$ [kg 重]
問 5.68	右欄	運動量と力積の関係より、 $\Sigma F \Delta t = m v_2 - m v_1$ ここで、 v_1 はボールの水平初速度 (0 m/s) で、 v_2 はリリース時のボールの水平速度である。 よって、 $v_2 = \frac{\Sigma F \Delta t}{m} = \frac{50 \times 0.14}{0.15} \leftrightarrows 46.7 \text{ [m/s]}$
問 5.69	[1]	長時間にわたって大きな力を発揮する
問 5.70	[2]	× 遠心力は見かけの力で、車の中にいる人がそのように感じるだけである。外から観察すれば、車が求心力で回転中心に引っ張られ、乗車している人には慣性があるため車の求心方向への加速に遅れ、外側に押し付けられる形になる(急ブレーキや急発進の時と同じ)。
問 5.71	右欄	水平方向を X (右方向を正)とし、水平方向の運動を考える。選手によって発揮された後方力を F_P とし、空気抵抗を F_a とする。システムの重心の加速度を a_X とする。運動方程式 Σ
問 5.72	右欄	[N·s]
問 5.73	[1]	

問 5.74	[1]	大きい	
		体重よりも大きな鉛直力(反作用力)を得なけ	れは、跳び上かることはできない。
問 5.75	右欄		
問 5.76	右欄	空中ぶらんこをつかんでいる曲芸師のみを フリーボディとした場合	2 人の曲芸師をフリーボディとした場合
問 5.77	[1]	1 試合目 両試合とも選手が地面に対して発揮した力積 が短い方が大きい。	は同じであるが,力は地面に作用させる時間
問 5.78	[1]	テ宙飛行士は身体の一部 (手足など) を動かすことにより身体重心回りに回転することはできるが、宇宙船の破片などが飛行士に近づき、飛行士がそれに触れて"外力"を得ない限り (作用・反作用の法則)、自らの身体重心を並進(外力の獲得 → 加速度の発生 → 速度・運動量の変化 → 位置の変化) させることはできない、なお、もし外力を得ることができたら、その後、飛行士は宇宙空間を等速度で並進運動(等速度運動)をし続ける。われわれが地球上で移動(並進運動)することができるのは、足から地面(地球)に対して力(作用力)を及ぼすことによって地面から足に対して反力(反作用力)、すなわち、"外力"を得ているからであることを改めて理解しておこう。	

	第6章 回転運動のキネティクス					
問題番号	解答番号	解答,計算式,補足など				
問 6.1	[2]	×				
問 6.2	[4]	モーメントアーム				
問 6.3	[1]	0				
問 6.4	右欄	角力積				
問 6.5	右欄	角運動量				

問 6.6	[2]	× 空中では物体の重心に重力のみが作用する。この重力は重心に作用するため重心回りのモーメントを発生させない。
問 6.7	[3]	並進も回転もする
問 6.8	[1]	0
問 6.9	[3]	角運動量はトルクが発揮されれば変わる
問 6.10	[1]	トルクがゼロである
問 6.11	[2]	×
問 6.12	[1]	0
問 6.13	[2]	В
問 6.14	[2]	×
問 6.15	[4]	A:作用点 B:支点 C:力点
問 6.16	[3]	質量、慣性モーメント
問 6.17	[3]	[1]と[2]の両方
問 6.18	右欄	[kg·m²]
問 6.19	右欄	バランスを保つためには、シーソーの軸回りのモーメントが等しくなる必要がある。
問 6.20	右欄	① 式(6.1)より、 $20 \times 0.5 = 10.00$ [N·m] 反時計回り ② 式(6.12)より、 $10 = 3\alpha$ これを α で解いて、 $\alpha = 3.33$ [rad/s²] ③ 式(6.17)より、角力積 $J = 10 \times 3 = 30.0$ [N·m·s] 反時計回り ④ 椅子は止まっているので、 0 [kg·m/s] ⑤ 式(6.19b)より、角力積の変化は角力積に等しくなるので、 $30.0 - 0 = 30.0$ [kg·m²/s] ⑥ 30.0 [kg·m²/s] ⑦ $5 + 30.0 = 35.0$ [kg·m²/s] ⑧ $-8 + 30.0 = 22.0$ [kg·m²/s]
問 6.21	右欄	バランスを保つためには、ヒトの正中線回りのモーメントが等しくなる必要がある。 よって、 W_2 の人の正中線からの距離を d_2 とすると、 $d_1W_1=d_2W_2$ $d_2=\frac{d_1W_1}{W_2}=\frac{1\times 200}{150}\leftrightarrows 1.333~[m]$
問 6.22	右欄	左下方へ動く

問 6.23	右欄	左上腕 左上腕 合成重心 左大腿
		右下腿
問 6.24	右欄	式(6.6) から、 $X = \frac{30 \times 4 + 15 \times 8 + 10 \times 10}{30 + 15 + 10} = 6.18$ 式(6.7) から、 $Y = \frac{30 \times 4 + 15 \times 6 + 10 \times 4}{30 + 15 + 10} = 4.55$ よって、物体の合成重心の座標値は、(6.18, 4.55) 《求めてみよう!》 【問 6.23】のスプリンターの走動作の図面について、方眼紙の任意の座標点に二次元座標系(第 1 象限を使用する)の原点を設定し、横軸を X 軸(右方向を正とする)、縦軸を Y 軸(上
		方向を正とする) として、身体 5 部分の重心位置をプロットしよう。そして、各重心位置の X および Y 座標値を読み取り、式 (6.6) と式 (6.7) を使用して、二次元座標系における合成重心の位置座標値(X, Y)を計算で求めてみよう。
問 6.25	[4]	トルクが大きければ、角加速度が増加する
問 6.26	[3]	トルク
問 6.27	[2]	上方かつ右方向へ位置する 身体の一部(この場合,両脚)を上げると一部(頭)が下がるため
問 6.28	[4]	kg·m²/s
問 6.29	右欄	前方かつ上方へ動く
問 6.30	[3]	回転
問 6.31	右欄	$d_1F_1 > d_2F_2$ ならば、ドアは開き、 $d_1F_1 < d_2F_2$ ならば、ドアは閉まる。 $d_1F_1 = 0.33 \times 86 = 28.4$ 、 $d_2F_2 = 0.39 \times 68 = 26.5$ より、ドアは開く
問 6.32	右欄	ダンベルの重量は、 $W=mg=40\times 9.80=392$ [N]. 膝関節からダンベルの重心までの距離を r とすると、 $r=d\sin \varphi=0.35\times \sin 37^\circ=0.2106\cdots$ [m] よって、ダンベルによって膝関節回りに発揮されるトルク (T) は、 $T=rW=0.2106\cdots\times 392 = 82.6$ [N·m]

問 6.33	右欄	ヒトの重力を W とし、足元から身体重心までの距離を r とする。また、ヒトが板から降りたときの体重計に表示される力を F とすると、つり合い式(式(6.5))より、 $rW=LF$ が成り立つ。これを r について解くと、 $r = \frac{LF}{W}$ ヒトの重力は、 $W=mg=65\times9.80=637$ [N] F は、 $F=345-45=300$ [N]よって、 $r=\frac{2\times300}{637} \div 0.942$ [m]
問 6.34	[2]	力のモーメント
問 6.35	右欄	角運動量と角力積の関係より、 $\Sigma N\Delta t = I_2\omega_2 - I_1\omega_1$ 450 × 0.14 = 69 – $I_1\omega_1$ $I_1\omega_1$ = 6.00 [kg·m²/s]
問 6.36	[4]	Tが発揮されるとき, I が大きいほど, $lpha$ は大きい
問 6.37	右欄	空中では角運動量が保存されることにより、姿勢の変化の前後で身体の角運動量は変わらない。 姿勢の変化の前の身体の角運動量を H_1 、 慣性モーメントを I_1 、 角速度を ω_1 とし、姿勢の変化後の身体の角運動量を H_2 、 慣性モーメントを I_2 、 角速度を ω_2 とすると、 $H_1=H_2$ 、 $I_1\omega_1=I_2\omega_2$ より、 姿勢の変化後の身体の角速度 (ω_2) は、 $\omega_2=\frac{I_1\omega_1}{I_2}=\frac{10\times8}{2}=40$ [rad/s] 1.5 回転は、540 × $\frac{\pi}{180}=9.424\cdots$ よって、1.5 回転に要する時間は、 $\Delta t=\frac{\Delta \theta}{\omega}=\frac{9.424\cdots}{40}$ $\stackrel{:}{=}$ 0.236 [s]
問 6.38	右欄	図のように、両腕を上げた姿勢から片腕を側方へ回して体側に着けると、作用・反作用の法則より、身体の回転の軸が傾くため、離地時に選手が持っている角運動量ベクトル (H) は、身体の左右軸方向の成分 (H_T) と長軸方向の成分 (H_L) に分けられ、二つの軸回りに身体が回転する。つまり、選手がボードから離れて、跳び上がった後、後方宙返りひねり(右肩があなた側へ向く)が発生する。
問 6.39	[2]	前方宙返りひねり(右肩があなたから反対側へ動く)
問 6.40	[3]	慣性モーメント
問 6.41	[2]	左回りに回る
問 6.42	[2]	J1 よりも遠くに着地する 作用・反作用(トルク)の法則から,腕を時計回りに回転させると,下肢は反時計回りに回 転して,足がより前方へ振り出される.
問 6.43	右欄	$H=I\omega$ より、 選手の慣性モーメント (I) は 2 kg·m²、選手の角速度 (ω) は $\frac{3\times 2\pi}{0.95}=19.84\cdots$ [rad/s] . よって、角運動量は、 $H=I\omega=2\times 19.84\cdots = 39.7$ [kg·m²/s]
問 6.44	[3]	

問 6.45	[3]	角加速度
問 6.46	右欄	[N·m]
問 6.47	[5]	
問 6.48	右欄	負荷 W によって回転軸回りに生じるモーメント $(N_W$ とする) は、 N_W = dW である。 あなたが両手で発揮する上向きの力(F とする)によって回転軸回りに生じるモーメント $(N_F$ とする) は、 N_F = $(p+d)F$ である。 つり合い条件より、 N_W = N_F \Rightarrow dW = $(p+d)F$ よって、 $F = \frac{dW}{p+d} = \frac{0.65 \times 800}{0.55 + 0.65} $
問 6.49	[2]	×
問 6.50	[1]	0
問 6.51	右欄	角力積
問 6.52	[1]	時計回り 作用・反作用(トルク)の法則から、腕を時計回りに回すと、上体は反時計回りに回るので、 崖から落ちるのを防ぐ。
問 6.53	右欄	① $a=38$ [°], $b=73$ [°]. $a+b=111.0$ [°] ② $a \ge b$ 間の角変位をラジアンで求めると、 $111.0 \times \frac{\pi}{180} = 1.937\cdots$ [rad]
問 6.54	[1]	踏切中に得たトルクを減少させる 選手は「常に過回転で入水する」ため、空中で姿勢を変えて調整するよりも、飛び板から離れる直前に得たトルク(角力積)を減少させたほうが効果的である。
問 6.55	別紙	p.38 ~ 41 ページ参照

		第7章 仕事,エネルギー,パワー
問題番号	解答番号	解答,計算式,補足など
問 7.1	[2]	×
問 7.2	[2]	×

問 7.3	[4]	$kg \cdot m^2/s^2$
問 7.3	[2]	
問 7.5	[4]	並進運動エネルギー
問 7.6	[5]	化学的 → 弾性 → 運動 → 位置
問 7.7	右欄	式(7.4)より、 $E_p = mgh = 100 \times 9.80 \times 2 = 1960$ [J]
問 7.8	右欄	式(7.5) より、 $E_{\rm t} = \frac{1}{2} m v^2 = \frac{0.145 \times 45^2}{2} = 146.8$ [J]
問 7.9	[5]	化学的 → 運動
問 7.10	[5]	化学的 → (運動+位置) → 位置 → 運動 → 熱
問 7.11	[6]	[2]ばねの弾性力と[4]重力
問 7.12	[4]	足がトランポリンの面から離れた時点
問 7.13	[3]	重心が最も低い時点
問 7.14	[2]	並進運動エネルギー
問 7.15	[2]	×
問 7.16	[2]	運動 → 弾性 → 運動 → 位置
問 7.17	右欄	式(7.21)より, $e = \frac{v_1}{v_0} = \frac{6.5}{10.4} = 0.625$
		$(v_0$:衝突前の速度, v_1 :衝突後の速度)
問 7.18	[1]	0
問 7.19	[1]	位置エネルギー
問 7.20	右欄	ヒトの初速度を v_0 とし,地面に衝突時の速度を v とする. 重力は保存力であるので,力学的ネネルギー保存の法則により,どの時点の高さにおいても,位置エネルギーと運動エネルギーの和は同じである.すなわち,
		$mgh = \frac{1}{2}mv^2$ より、 $v = \sqrt{2gh} = \sqrt{2 \times 9.80 \times (-10)} = -14$ [m/s] 運動量と力積の関係より、
		$F = \frac{mv - mv_0}{\Delta t} = \frac{60 \times (-14) - 60 \times 0}{0.01} = -84000 = -8.40 \times 10^4 [N]$
問 7.21	[4]	負の仕事では、力と運動は互いに同じ方向にある
問 7.22	[4]	弾性 → 運動 → 位置 → 運動 → 弾性
問 7.23	[1]	0
問 7.24	右欄	力学的エネルギーの保存の法則と反発係数(e)の式より、 $e = \frac{v_1}{v_0} = \sqrt{\frac{2gh_1}{2gh_0}} = \sqrt{\frac{h_1}{h_0}}$ $h_0 は最初に落とした高さ、h_1 は跳ね返った高さである.よって、e = \sqrt{\frac{h_1}{h_0}} = \sqrt{\frac{1.2}{1.5}} = 0.894$
		$e = \sqrt{\frac{h_1}{h_0}}$ より、 $h_1 = e^2 h_0$ である。 同様に考えて、2 回目の衝突後の高さ (h_2) は、 $h_2 = e^2 h_1$ である。
		同様に考えて、2回目の衝突後の高さ(h_2)は、 $h_2 = e^-h_1$ である。 よって、 $h_2 = e^2e^2h_0 = e^4h_0 = 0.894\cdots^4 \times 1.5 = 0.960$ [m]

問 7.25	[4]	鉄棒バーの真上
問 7.26	[5]	鉄棒バーの真下
問 7.27	[2]	回転運動エネルギー
問 7.28	[3]	運動 → 熱
問 7.29	右欄	① 衝突(インパクト)後のボールの速度($v_{2\text{-ball}}$)とパットヘッド速度($v_{2\text{-bal}}$)が未知数なので、関係する二つの方程式を立て連立して解を求める。パットの質量を m_{ball} (0.9 kg)、ボールの質量を m_{ball} (0.15 kg)とする。衝突前後でシステムが外力による力積を受けていないとき、システム全体の運動量は保存されること(運動量保存の法則)より、 $m_{\text{ball}}v_{1\text{-ball}} + m_{\text{ball}}v_{1\text{-ball}} = m_{\text{ball}}v_{2\text{-ball}} + m_{\text{ball}}v_{2\text{-ball}}$ また、反発係数(e)の式より、 $e = -\frac{v_{2\text{-ball}} - v_{2\text{-ball}}}{v_{1\text{-ball}} - v_{1\text{-ball}}}$ 両式に既知の値を代入すると、以下となる。 $0.9 \times 30 + 0.15 \times (-45) = 0.9 \times v_{2\text{-ball}} + 0.15 \times v_{2\text{-ball}}$ $e = -\frac{v_{2\text{-ball}} - v_{2\text{-ball}}}{30 - (-45)}$ これを連立して解くと、 $v_{2\text{-ball}} = 15.54 \text{ [m/s]} \text{右向き}, v_{2\text{-ball}} = 41.8 \text{ [m/s]} \text{右向き}$ ② 衝突前の力学的エネルギー(E_1): $E_1 = \frac{1}{2} m_{\text{ball}} v_{1\text{-ball}}^2 + \frac{1}{2} m_{\text{ball}} v_{1\text{-ball}}^2 = \frac{0.9 \times 30^2}{2} + \frac{0.15 \times (-45)^2}{2} \approx 557 \text{ [J]}$ 衝突後の力学的エネルギー(E_2): $E_2 = \frac{1}{2} m_{\text{ball}} v_{2\text{-ball}}^2 + \frac{1}{2} m_{\text{ball}} v_{2\text{-ball}}^2 = \frac{0.9 \times 15.54 \cdots^2}{2} + \frac{0.15 \times 41.8 \cdots^2}{2} \approx 240 \text{ [J]}$ $\Delta E = E_2 - E_1 = 240 - 557 = -317 \text{ [J]}$ ③ パットが受けた力積(L_{ball}): $L_{\text{ball}} = m_{\text{ball}} (v_{2\text{-ball}} - v_{1\text{-ball}}) = 0.9 \times (15.54 \cdots -30) \approx -13.02 \text{ [N·s]} \text{左向き}$ ボールが受けた力積(L_{ball}): $L_{\text{ball}} = m_{\text{ball}} (v_{2\text{-ball}} - v_{1\text{-ball}}) = 0.15 \times (41.8 \cdots - (-45)) \approx 13.02 \text{ [N·s]} \text{右向き}$
問 7.30	右欄	$e = -\frac{v_{2-\text{bat}} - v_{2-\text{ball}}}{v_{1-\text{bat}} - v_{1-\text{ball}}} = -\frac{17 - 39}{30 - (-45)} = 0.293$
問 7.31	[2]	反発係数 (e) の式より、 ボール A の反発係数: $e_A = \sqrt{\frac{h_1}{h_0}} = \sqrt{\frac{1.75}{2.0}} = 0.935$ ボール B の反発係数: $e_B = \sqrt{\frac{h_1}{h_0}} = \sqrt{\frac{1.35}{1.5}} = 0.949$
問 7.32	[2]	力学的効率は入力/出力の比である(正解は出力/入力の比)
問 7.33	[2]	有用性が低い「仕事とエネルギーの方法」をはじめ、エナジェティクスで扱う力学的パラメータのすべては"大きさ"のみをもつ「スカラー量」である。一般にバイオメカニクス研究において、剛体リンクモデルからなる身体の運動動作(技術)のメカニズムなどを詳しく検討し解明するためには、各々の力学的パラメータの"大きさ"だけでは不十分であり、その"方向"にも着目する必要がある。このため、「運動量と力積の方法」などで使用される力学的パラメーター、すなわち、"大きさ"も"方向"ももつ「ベクトル量」を扱う場合が多い。

第8章 流体力:空気や水による力		
問題番号	解答番号	解答,計算式,補足など
問 8.1	[1]	0
問 8.2	[3]	気体, 固体, 液体
問 8.3	[2]	骨
問 8.4	[3]	流体の密度
問 8.5	[3]	体積
問 8.6	[2]	×
問 8.7	[2]	左
問 8.8	[2]	×
問 8.9	[4]	浮心
問 8.10	[2]	×
問 8.11	[1]	0
		アスリートなどで体脂肪率が 10%を切る女性は沈む場合もある.
問 8.12	[2]	×
問 8.13	[1]	無回転のボールよりも滞空時間が短くなる
問 8.14	[2]	両腕を頭上に伸ばさせる
問 8.15	[1]	0
問 8.16	[1]	0
問 8.17	[4]	投影面積 体形を卵形にすると、抗力が小さくなる。
問 8.18	[1]	A
問 8.19	[2]	×
問 8.20	[2]	体幹へ作用する抵抗力を小さくするため
問 8.21	[1]	
問 8.22	[2]	流速大・圧力小
問 8.23	[2]	×
問 8.24	[1]	0
問 8.25	[2]	×
問 8.26	[1]	0
問 8.27	[2]	1/4
問 8.28	[2]	×
問 8.29	[3]	
問 8.30	[4]	抗力を小さくするためである

問 8.31	[2]	×
問 8.32	[2]	浮きにくい
問 8.33	[4]	
問 8.34	[2]	身体重心よりも頭側にある
問 8.35	[3]	バスケットボール
問 8.36	[2]	b
問 8.37	[4]	上方力と後方力
問 8.38	[2]	×
問 8.39	[1]	AはBよりも重い
問 8.40	[2]	浮きやすい
問 8.41	[3]	まっすぐに進むが、次第に右方向へ向きを変えながら進む
問 8.42	[2]	×
問 8.43	[2]	b
問 8.44	[3]	肺に空気を満たせば、男性は全員浮く
問 8.45	[2]	レースの方向とは逆の方向
問 8.46	右欄	ベルヌーイの定理より、帆に作用する FBD(抗力と揚力)を描く(図).抗力と揚力について、ヨット船体の長軸方向の成分(つまり前後方向成分)を求め、総和(ΣF)を求める.抗力を F_D ,揚力を F_L とし、その前後方向成分をそれぞれ F_D ', F_L ' とすると、図から, F_D ' = F_D sin 30° = 564 × 0.5 = 282 [N] $F_L' = F_L \sin 60^\circ = 433 \times 0.866 = 374.98 \cdots [N]$ 正負の方向を考慮すれば, F_D ' は負, F_L ' は正である. $\Sigma F = F_D$ ' + F_L ' = $-282 + 374.98 \cdots = 93.0 [N]$ よって,ヨットは,93.0 N の力を受けて前方へ進む.
問 8.47	[2]	В

	第9章 筋収縮の力学		
問題番号	解答番号	解答,計算式,補足など	
問 9.1	[3]	A:関節モーメント,B:筋張力	
問 9.2	[1]	0	
問 9.3	[1]	0	
問 9.4	[1]	筋収縮はミオシンフィラメントがアクチンフィラメントの間へ滑り込むことにより行われ る	
問 9.5	[3]	A:収縮要素,B:直列弾性要素,C:並列弾性要素	
問 9.6	[2]	サルコメア	
問 9.7	[3]	伸張性筋活動	
問 9.8	[3]	С	
問 9.9	[2]	×	
問 9.10	[1]	A:ミオシンフィラメント,B:アクチンフィラメント	
問 9.11	[4]	筋のカーパワー関係	
問 9.12	右欄	筋張力による肘関節回り(反時計回り)のモーメントを N_1 とし,システムの重心に作用する肘関節回り(時計回り)のモーメントを N_2 とする. つり合い条件($\Sigma N = 0$)から, $N_1 = N_2$ $r_1 F_M = r_2 W_{BFH}$ より, $F_M = \frac{r_2 W_{BFH}}{r_1} = \frac{0.40 \times 300}{0.1} = 1200 \ [N]$	
問 9.13	右欄	$F_{\rm M}$ に対する $F_{\rm M}$ ' が作用する方向は 25°(= 115° – 90°)であるので、 $\cos 25^{\circ} = \frac{F_{\rm M}}{F_{\rm M}}$ より、 $F_{\rm M}' = \frac{F_{\rm M}}{\cos 25^{\circ}} = \frac{1200}{0.9063\cdots} = 1324 \ [{\rm N}]$	
問 9.14	[1]	[1] の姿勢が最も大きな筋張力を必要とする理由は,筋モーメントアームが最も小さくなり,かつ,外力のモーメントアームが最も大きくなるためである.	
問 9.15	[3]	筋張力が一定の場合,外的てこ比が小さいと,外部の物体へ大きな力を発揮することがで きる	
問 9.16	[1]	AよりもBにおいて短縮速度が大きい	
問 9.17	[3]	力-速度関係	
問 9.18	[4]	伸張性筋活動	
問 9.19	[4]	A. V. Hill 博士	
問 9.20	[1]	短縮性筋活動	
問 9.21	[3]	筋活動中、筋が引き伸ばされる	
問 9.22	[5]	なお、トレーナービリティ(トレーニングの改善度・期待度)は"速度"よりも"筋力"のほうが大きいため、最大パワーを改善し向上させるためには"筋力"を最大化する (maximization)、つまり"最大筋力"を大きくするのが効果的である.	

問 9.23	[1]	伸展筋群が常時活動している
問 9.24	[2]	b
問 9.25	[2]	おもに伸張性活動が優位である
問 9.26	右欄	つり合い条件($\Sigma N=0$)より,
		$r_1 F_{M} = r_2 W_{FH} + r_3 W_{B}$ $W_{B} = \frac{r_1 F_{M} - r_2 W_{FH}}{r_3} = \frac{0.05 \times 4000 - 0.22 \times 18}{0.38} = 516 \text{ [N]}$
問 9.27	[1]	短縮性筋活動において、力と速度は正比例する
問 9.28	[3]	600, 40
問 9.29	[1]	身体を上げるときは短縮性,下げるときは伸張性筋活動である
問 9.30	[1]	A側の筋活動はB側の筋活動よりも大きい
問 9.31	[5]	力学的伸張 指の腱を強制的に引き伸ばした状態で筋張力が最大限に増大する。図 9.9 参照

	模 擬 試 験 問 題		
問題番号	解答番号	解答,計算式,補足など	
問]	[4]	質量	
問 2	[1]	0	
問 3	[4]	運動力学	
問 4	[2]	×	
問 5	[3]	kg·m/s	
問 6	[2]	複数の点が相対位置を変えない	
問 7	[2]		
問 8	[2]	負	
問 9	[2]	力が一定なら、質量が大きくなるほど加速度は大きくなる	
問 10	[3]	身体へ発揮されたトルクはゼロである	
問 11	[4]	化学的 → 弾性 → 運動 → 位置	
問 12	[3]	最初に若干左に進み,その後,次第に左方向へ大きく曲がっていく	
問 13	[5]	力積法	
問 14	[3]	下方かつ前方	
問 15	[4]	並進運動エネルギー	
問 16	[1]	0	
問 17	[2]	減少する	
問 18	[3]		
問 19	[2]	屈筋群/伸張性	
問 20	[2]		
問 21	[1]	時計回り	
問 22	[3]	手から砲丸へ発揮される力は A も B も同じである	
問 23	[5]	加速度が負である	
問 24	[1]	時計回り	
問 25	[2]	前方宙返りひねり(右肩があなたと反対側へ動く)	
問 26	[4]	抗力を小さくするため	
問 27	[2]	下方かつ後方	
問 28	[1]	A の筋群が活動している	
問 29	[2]	上方かつ左に動く	
問 30	[3]	基底面が狭い	
問 31	[2]	×	
問 32	[2]	跳馬台から離れた後,両腕を反時計回りに強く回転させる	

日日 つつ	ГиЛ	当田 2 ト 5			
問 33	[4]	説明2と5			
問 34	[1]	反時計回りの回転速度が減少する			
問 35	[4]	80.0 [kg]			
		質量は、宇宙空間はもとより、あらゆる場所において変わらない.			
問 36	[2]	$W = mg \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
問 37	[1]	水平速度を $v_{\rm X}$ 、鉛直速度を $v_{\rm Y}$ とすると, $v_{\rm X}=\frac{4.6}{{\sf tan}~49^{\circ}}=3.9987\cdots ≒ 4.00~[{\sf m/s}]$			
問 38	[4]	$\omega = \frac{v}{r} = \frac{24.3}{0.83} = 29.27 \dots \text{ [rad/s]} 29.27 \dots \times \frac{180}{\pi} = 1677 \text{ [°/s]}$			
問 39	[4]	運動量と力積の関係から、物体 $(ソリ)$ に加えられた力積が最も大きい条件が運動量の変化 つまり物体の速度が最も大きくなる。よって、 $[4]$ が正解: $125 \times 15 = 1875$ $[N \cdot s]$			
問 40	[4]	まず、三角関数により、踏切離地時の身体重心の水平初速度 (v_{x0}) と鉛直初速度 (v_{y0}) を求める。次に、式 (3.14) より、滞空時間 (t) を求める。最後に式 (3.16) より $(v_0=0)$ 、身体重心の水平到達距離を求める。正解: 8.43 [m]			
問 41	[2]	子どもの支点回りのモーメントを N_1 , 大人の支点回りのモーメントを N_2 とする. つり合い条件 ($\Sigma N=0$) より, $N_1=r_1W_1=3.54\times235=812$ [N·m] (反時計回り), $N_2=-r_2W_2=-1.05\times785=-824$ [N·m] (時計回り). よって, 支点回りに反時計回りのモーメントが生じ, 子どもが下降し, 大人が上昇する.			
問 42	[2]	まず FBD を描く(図). 下方への力の総和は、 $\Sigma F = W + F_V = -750 - 665 = -1415$ [N] よって、抗力(F_N)は、 $F_N = 1415$ [N] 摩擦力 $f = \mu F_N$ より、 $f = 0.65 \times 1415 = -920$ [N] この摩擦力 (f) は、体操選手によって跳馬に加えられた 水平力 ($F_H = 535$ [N]) よりも大きいため、よって跳馬 は動かない、つまり、 $a_{cm} = 0$ [m/s²]			
問 43	[2]	ダンベルに作用する重力は、すなわち片手でダンベルを保持させる上方力である。 肩関節の筋群が発揮する筋張力 $(F_{\rm M}$ とする) による肩関節回り (反時計回り) のモーメントと上腕+前腕+手のシステムの重力 $(W_{\rm a}$ とする) およびダンベルに作用する重力 $(W_{\rm d}$ とする) が肩関節回り (時計回り) に発生させるモーメントのつり合いを考え、 $W_{\rm d}$ について解くと、以下の式となる。 $W_{\rm d} = \frac{r_1 F_{\rm M} - r_2 W_{\rm a}}{r_2 + r_3}$ この式に既知の値を代入し解くと、 $W_{\rm d}$ $ = 110.7$ [N]となる。			
問 44	[1]	板から身体重心までの距離を r とする。つり合いの条件から、身体重心および板の重心に作用する重力 (それぞれ $W_{\rm p}$, $W_{\rm B}$) による支点回り (時計回り) のモーメントと、体重計の力 (反力 F) による支点回り (反時計回り) のモーメントのつり合いを考え、 r について解くと、以下の式となる。 $r = \frac{LF - KW_{\rm B}}{W_{\rm p}}$ この式に既知の値を代入し解くと、 $r = 0.630$ [m] となる。			

BB 45	F 4 7	カートンファーウルの欠劫とホルとしても、 スペンツマウルのな字も目に向せてしててし
問 45	[4]	空中において、身体の姿勢を変化させても、その前後で身体の角運動量は保存されること から、 $H_1 = H_2$ の関係が成り立つ。 H_1 は姿勢を変える前の身体の角運動量、 H_2 は姿勢を
		m 5, $n_1 - n_2$ の関係が成り立り、 n_1 は安労で変える前の分体の用連動重、 n_2 は安労で変えた後の身体の角運動量である。
		えたた後の身体の角連動量である。 よって、姿勢を変えた後の身体の角速度は、 $I_1\omega_1=I_2\omega_2$ より、
		$\omega_2 = \frac{I_2 \omega_1}{I_2} = \frac{8.5 \times 3}{4} = 6.375 = 6.38 \text{ [rad/s]}$
		また、3回転は1080°であり、ラジアン表記すると、
		18.849 ··· [rad] (=1080 × $\frac{\pi}{180}$)
		よって、 $\omega = \frac{\Delta\theta}{\Delta t}$ より、 $\Delta t = \frac{\Delta\theta}{\omega} = \frac{18.849\cdots}{6.375} \doteq 2.96$ [s]
問 46	[3]	100 kg のバーベルの重力は, $W = mg$ より, $W = 100 \times 9.80 = 980$ [N]
		$\Sigma F = ma \ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $\ $$
問 47	[1]	力学的エネルギーの保存則と反発係数(e)の式より,
		$e = \frac{V_1}{V_2} = \sqrt{\frac{2gh_1}{2gh_2}} = \sqrt{\frac{h_1}{h_2}}$
		$oxed{V_0} oxed{\gamma} Zgn_0 oxed{\gamma} N_0 \ oxed{h_0}$ は跳ね返った高さである.よって,
		F
		A のボールの反発係数 (e_A) : $e_A = \sqrt{\frac{h_1}{h_0}} = \sqrt{\frac{1.75}{2.50}} \approx 0.837$
		B のボールの反発係数 $(e_{\rm B})$: $e_{\rm B} = \sqrt{\frac{h_{\rm l}}{h_0}} = \sqrt{\frac{1.30}{2.00}} = 0.806$
問 48	[1]	式(8.1) より、 $D = \frac{m}{v}$. $D = \left(\frac{525}{9.80}\right) \times \frac{1}{54} = 0.992$
問 49	[2]	$T_1 = d_1 F_1 = 0.24 \times 65 = 15.60 \text{ [N·m]}, \ T_2 = d_2 F_2 = 0.29 \times 58 = 16.82 \text{ [N·m]}$
問 50	[5]	ベルヌーイの定理より, 帆に作用する FBD (抗力と揚力)を描く(図). 抗力と揚力について,
		ヨット船体の長軸方向の成分(つまり前後方向成分)を求め、総和(ΣF)を求める.
		抗力を F_D , 揚力を F_L とし,その前後方向成分をそれぞれ F_D ', F_L 'とすると,図から,
		$F_{\rm D}' = F_{\rm D} \sin 24^{\circ} = 480 \times 0.4067 \dots = 195.23 \dots [N]$
		$F_{L}' = F_{L} \sin 66^{\circ} = 595 \times 0.9135 \dots = 543.55 \dots [N]$
		正負の方向を考慮すれば、 F_{D}' は負、 F_{L}' は正である。
		$\Sigma F = F_D' + F_L' = -195.23 \dots + 543.55 \dots = 348 [N]$
		よって、ヨットは、348 N の力を受けて前方へ進む.
		前方
		風の向き
		F _L ' / θ = 24 [*]
		θ = 66 [°]
		θ = 24 [*]
		F_{D} M
		: <u>I</u>
		▼ 後方

画像を用いたヒトの身体重心の算出法

一座標計算法 —

《はじめに》

画像を用いたヒトの身体重心の算出法は、通常、ハイスピードカメラなどにより撮影された身体運動の録画画像を動作解析用ソウトウェアを使用することによって、コンピュータの画面上における複数の身体標点の二次元座標値を数値化して("デジタイジング"と呼ばれる)求める方法である。

しかし本ワークブックでは、体操選手のあん馬試技画像(以下、試技画像と呼ぶ)における複数の身体標点の二次元座標値は、解答者が"定規(推奨:長さ30 cm、間隔1 mm)"を使用して計測するものとする。以下、身体重心の算出の手順について記載するので、この手順に従って、身体重心位置を求め、その位置を試技画像に黒丸で記入しなさい。なお、試技画像は所定の場所*よりダウンロードして使用しなさい

《身体重心の算出の手順》

(1) ステップ 1 - 身体各標点(22点)の座標値の計測

試技画像の身体各標点合計 22点の X 座標と Y 座標のピクセル値を、定規を使用して整数(5の倍数とする)で計測し、それぞれ計測したピクセル値を、表 1 (p.74)の該当欄に記入しなさい。なお、身体各標点の英語略記の日本語名称は、表 1 を参照しなさい。

(2) ステップ 2—二次元座標系の原点とスケール両端の 座標値の計測

二次元座標系の原点(試技画像のX軸とY軸の交差点)のX座標とY座標のピクセル値を定規で計測し、表2の該当欄に記入しなさい。同様に、スケールの両端(横方向)のX座標とY座標のピクセル値を定規で計測し、表2の該当欄に記入しなさい。

(3) ステップ 3一部分重心と身体重心の座標値の計算

身体を14個の部分(頭部,体幹部,左右の上腕部・前腕部・手部・大腿部・下腿部および足部)に分割して,各部分の体幹に近い点を近位端点,遠い点を遠位端点と呼ぶ.たとえば,頭部の近位端点は「あご点(GN)」であり,遠位端点は「頭頂点(VT)」である。また,体幹部の

近位端点は「左右の股関節点を結んだ線分の中点 (MH)」,遠位端点は「胸骨上縁点 (ST)」である。各部分の重心は各部分の近位端点と遠位端点を結線した線分上にあると考え,身体部分慣性係数(質量中心比,質量比)から求める。ここでは,de Leva (J. of Biomechanics, **29** (9),1223 (1996))により報告された係数を用いて,以下の式により,各部分の重心位置の座標値(ピクセル値)を算出する。

X 座標:部分の重心の X 座標値

 $= PP + [p \cdot (DP-PP)]$ [式 1]

Y 座標:部分の重心の Y 座標値

 $= PP + [p \cdot (DP-PP)]$ [式 2]

ここで、PP、DP はそれぞれの部分の近位端点と遠位端点の X 座標または Y 座標値、p は質量中心比 (近位端点からの部分の重心位置の比)である。表 3-1 の 4 列目と6 列目は、それぞれ各部分の質量中心比と質量比を示したものである。

① 部分重心と身体重心の X 座標値の計算

表 3-1 の 2 列目には、表 1 で記入された該当部分の 近位端点の X 座標のピクセル値、また、3 列目には表 1 で記入された該当部分の遠位端点の X 座標のピクセル 値を再度記入しなさい、次に、表 3-1 の 5 列目に上記 [式 1] を用いて各部分の重心の X 座標値を求めて記入 した後、算出された X 座標値と 6 列目の質量比を乗じ て、7 列目にその値を記入しなさい、最後に、表 3-1 の 7 列目の値をすべて加算して身体重心の X 座標値を求 め、欄外の該当箇所(a) に記入しなさい、

② 部分重心と身体重心の Y 座標値の計算

表 3-2 を使用して, (3) ①と同様の計算を行い, 身体 重心の Y 座標値を求め, 欄外の該当箇所 (a) に記入しな さい.

(4) ステップ 4-二次元座標系への座標変換と実長換算

ステップ3で求められた身体重心の二次元座標値は、コンピュータの画面上でのピクセル値に過ぎず、また、実際の長さを表したものではない。そこで、これらの座標値を、①実際の二次元座標系の座標値に変換する、② 実際の長さに換算する(実長換算)、作業を行う必要がある。

^{*} 化学同人ホームページ:https://www.kagakudojin.co.jp/book/b492795.html

① 実際の二次元座標系の座標変換

表 2 に記入した二次元座標系の原点の X, Y 座標値を 使用し、ステップ 3 で求められた身体重心の二次元座 標値を座標変換する. 具体的には,

X 座標:身体重心の X 座標値 - 原点の X 座標値 Y 座標:身体重心の Y 座標値 - 原点の Y 座標値

上式により座標変換された X, Y座標値を, 表 3-1 と表 3-2 の欄外の該当箇所(b)に記入しなさい.

② 実長換算

スケールの両端点のピクセル値の差が 1 メートル (試技画像の縦横比は同じである) であることを利用して、スケールファクター (下に記入)を求め、その値を (4) ①によって得られた X、Y 座標値に乗じることによって実際の長さに換算し、それぞれの座標値を表 3-1 と表 3-2 の欄外の該当箇所(c)に記入しなさい。(※分母のピ

クセル = スケール右端点のピクセル値- 左端点のピクセル値)

スケールファクター =
$$\frac{1 \text{ [m]}}{530 - 130 \text{ [ピクセル]}}$$
 = 0.0025

(5) ステップ 5一身体重心の位置を画像に記入する

最後に、求められた身体重心の位置を試技画像に鉛筆で黒丸を記入しなさい。このために、ステップ3で求められた身体重心のピクセル値(表3-1と表3-2の欄外の(a)の値)を使用しなさい。

【文献】

de Leva, P. 'Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters,' *Journal of Biomechanics*, **29** (9), 1223 (1996).

表 1 身体各標点の二次元座標値(ピクセル値)

身体各標点(英語略記)	好体合信点の二次几座信値(こうと) X	Y
頭頂点(VT)	280	190
あご点(GN)	325	95
胸骨上縁点(ST)	345	60
左右股関節中点(MH)	540	-65
右肩関節点(RS)	270	20
右肘関節点(RE)	315	-95
右手関節点(RW)	340	-220
右第3中手骨頭点(RN)	320	-240
左肩関節点(LS)	430	100
左肘関節点(LE)	505	-15
左手関節点(LW)	520	-115
左第3中手骨頭点(LN)	530	-145
右股関節点(RH)	540	-100
右膝関節点(RK)	650	-155
右足関節点(RA)	825	-190
右踵骨点(RC)	830	-205
右つま先点(RT)	905	-180
左股関節点(LH)	540	-20
左膝関節点(LK)	585	135
左足関節点(LA)	650	305
左踵骨点(LC)	700	315
左つま先点(LT)	650	400

表2 原点とスケール両端点の二次元座標値(ピクセル値)

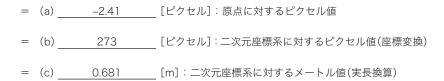
		X	Υ
原点		75	-275
スケール	左端点	130	360
	右端点	530	360

表3-1 身体各部分の重心の X 座標値(ピクセル値)

1列	2 列	3列	4列	5 列	6 列	7 列
記号→	PP	DP	р	G	m	G∙m
部分↓	近位端点のX座標値	遠位端点のX座標値	質量中心比	部分重心のX座標値	質量比	
頭部	あご点(GN): 325	頭頂点(VT): 280	0.4024	307	0.0694	21.3
体幹部	股関節中点(MH): 540	胸骨上縁点(ST): 345	0.5514	432	0.4346	188.0
右上腕部	右肩関節点(RS): 270	右肘関節点(RE): 315	0.5772	296	0.0271	8.02
右前腕部	右肘関節点(RE): 315	右手関節点(RW): 340	0.4574	326	0.0162	5.29
右手部	右手関節点(RW): 340	右第 3 中手骨頭点 (RN): 320	0.7900	324	0.0061	1.978
左上腕部	左肩関節点(LS): 430	左肘関節点(LE): 505	0.5772	473	0.0271	12.83
左前腕部	左肘関節点(LE): 505	左手関節点(LW): 520	0.4574	512	0.0162	8.29
左手部	左手関節点(LW): 520	左第 3 中手骨頭点 (LN): 530	0.7900	528	0.0061	3.22
右大腿部	右股関節点(RH): 540	右膝関節点(RK): 650	0.4095	585	0.1416	82.8
右下腿部	右膝関節点(RK): 650	右足関節点(RA): 825	0.4459	728	0.0433	31.5
右足部	右踵骨点(RC): 830	右つま先点(RT): 905	0.4415	863	0.0137	11.82
左大腿部	左股関節点(LH): 540	左膝関節点(LK): 585	0.4095	558	0.1416	79.1
左下腿部	左膝関節点(LK): 585	左足関節点(LA): 650	0.4459	614	0.0433	26.6
左足部	左踵骨点(LC): 695	左つま先点(LT): 650	0.4415	675	0.0137	9.25

身体重心の X 座標値(ΣG·m)

= (a) ______ [ピクセル]:原点に対するピクセル値


= (b) _____ [ピクセル]:二次元座標系に対するピクセル値(座標変換)

= (c) ______[m]:二次元座標系に対するメートル値(実長換算)

表3-2 身体各部分の重心の Y 座標値(ピクセル値)

1列	2 列	3列	4列	5 列	6 列	7列
記号→	PP	DP	р	G	m	G∙m
部分↓	近位端点のY座標値	遠位端点のY座標値	質量中心比	部分重心のY座標値	質量比	
頭部	あご点(GN): 95	頭頂点(VT): 190	0.4024	133.2	0.0694	9.25
体幹部	股関節中点(MH): -65	胸骨上縁点(ST): 60	0.5514	3.93	0.4346	1.706
右上腕部	右肩関節点(RS):	右肘関節点(RE): -95	0.5772	-46.4	0.0271	-1.257
右前腕部	右肘関節点(RE): -95	右手関節点(RW): -220	0.4574	-152.2	0.0162	-2.47
右手部	右手関節点(RW): -220	右第 3 中手骨頭点 (RN): -240	0.7900	-236	0.0061	-1.438
左上腕部	左肩関節点(LS):	左肘関節点(LE): -15	0.5772	33.6	0.0271	0.911
左前腕部	左肘関節点(LE): -15	左手関節点(LW): -115	0.4574	-60.7	0.0162	-0.984
左手部	左手関節点(LW): -115	左第 3 中手骨頭点 (LN): -145	0.7900	-138.7	0.0061	-0.846
右大腿部	右股関節点(RH): -100	右膝関節点(RK): -155	0.4095	-122.5	0.1416	-17.35
右下腿部	右膝関節点(RK): -155	右足関節点(RA): -190	0.4459	-170.6	0.0433	-7.39
右足部	右踵骨点(RC): -205	右つま先点(RT): -180	0.4415	-194.0	0.0137	-2.66
左大腿部	左股関節点(LH): -20	左膝関節点(LK): 135	0.4095	43.5	0.1416	6.16
左下腿部	左膝関節点(LK): 135	左足関節点(LA): 305	0.4459	211	0.0433	9.13
左足部	左踵骨点(LC): 315	左つま先点(LT): 400	0.4415	353	0.0137	4.83

身体重心の Y 座標値(ΣG·m)

